The WIHAH conference brought together Alaskan, U.S., and international engineers, health experts, researchers, community members, policymakers, and innovators to discuss health benefits, challenges and innovations associated with making running water and sewer in remote northern communities safe, affordable and sustainable. A conference proceedings publication including a summary report of the meeting was produced. This conference consisted of expert speaker and poster presentation sessions, along with selected innovative technical demonstrations.

This circumpolar conference was identified as an official event in conjunction with the U.S. Chairmanship of the
Arctic Council, as an endorsed project of the Arctic Council Sustainable Development Working Group. The Alaska Department of Environmental Conservation partnered with a number of U.S. agencies to sponsor this informative conference. Federal sponsors included the U.S. Environmental Protection Agency, U.S. Arctic Research Commission; U.S. the Centers for Disease Control and Prevention; the U.S. Department of State; and the U.S. Department of Agriculture, Rural Development Program.

Conference themes:

- The impact of household water and sanitation on Arctic human health
- Climate change impacts on water and sanitation infrastructure in the Arctic
- Innovative engineering approaches to increase access to water of adequate quality and quantity, including water reuse
- Methods of ownership, operations and maintenance to maximize useful life of water and sewer systems in the Arctic
- Regulations and policies affecting access to and the cost of providing adequate quantities of water in the home

Please contact fatima.ochante@alaska.gov with any questions.

Thank you to our generous sponsors

© 2016 WIHAH
WATER INNOVATIONS FOR HEALTHY ARCTIC HOMES

ADDRESSING THE CHALLENGES OF PROVIDING SAFE AND AFFORDABLE ACCESS TO HOUSEHOLD RUNNING WATER AND SANITATION IN REMOTE ARCTIC AND SUB-ARCTIC COMMUNITIES

CONFERENCE THEMES

THE IMPACT OF HOUSEHOLD WATER AND SANITATION ON ARCTIC HUMAN HEALTH

CLIMATE CHANGE IMPACTS ON WATER AND SANITATION INFRASTRUCTURE IN THE ARCTIC

INNOVATIVE ENGINEERING APPROACHES TO INCREASE ACCESS TO WATER OF ADEQUATE QUALITY AND QUANTITY, INCLUDING WATER REUSE

METHODS OF OWNERSHIP, OPERATIONS AND MAINTENANCE TO MAXIMIZE USEFUL LIFE OF WATER AND SEWER SYSTEMS IN THE ARCTIC

REGULATIONS AND POLICIES AFFECTING ACCESS TO AND THE COST OF PROVIDING ADEQUATE QUANTITIES OF WATER IN THE HOME

ANCHORAGE HILTON
ANCHORAGE, ALASKA
SEPTEMBER 18-21, 2016
TABLE OF CONTENTS

SPONSORING AGENCIES 3
EXECUTIVE SUMMARY & FORWARD 5
ORGANIZING COMMITTEE 13
PRESENTATIONS 15
PRESENTER BIOGRAPHIES 20
ABSTRACTS 40
OVERVIEW OF HOUSEHOLD WATER & SEWER PILOT SYSTEMS IN DEVELOPMENT 78
CONFERENCE PARTICIPANTS 87
SPONSORING AGENCIES
THANK YOU TO OUR GENEROUS SPONSORS

[Logos of various sponsors]

United States Department of Agriculture
Rural Development
EXECUTIVE SUMMARY & FORWARD

The Water Innovations for Healthy Arctic Homes (WIHAH) conference was held in Anchorage, Alaska, September 18-21, 2016, and was hosted by the Alaska Department of Environmental Conservation. WIHAH was part of an Arctic Council project, endorsed by the Council’s Sustainable Development Working Group and co-lead by the United States and the Kingdom of Denmark during the U.S. Chairmanship in 2015-2017. A related meeting, “Sanitation in Cold Climate Regions” (ARTEK Event), was held in Sisimiut, Greenland, in April, 2016.

Both meetings convened international experts, engineers, health experts, academics and community members to share information, explore innovations, and encourage partnerships toward the goal of promoting safe and affordable access to household running water and sanitation services in remote Arctic communities.

The United Nations Sustainable Development Goal (SDG) #6 aims to “achieve universal and equitable access to safe and affordable drinking water for all” by 2030. Many Arctic and sub-Arctic households in Alaska, Canada, Greenland and Russia suffer from a lack of access to sufficient water and sanitation services, contributing to high rates of infectious diseases. Such services are fundamental to sustainable development and community resilience in a rapidly changing Arctic. However, the challenges associated with building and operating water and sanitation systems in the Arctic are formidable. Construction costs often exceed available government funding and rural communities face logistical and economic difficulties to keep systems running. Unless alternative funding mechanisms are adopted or innovative approaches to water and sanitation services are implemented, many Arctic and sub-Arctic residents may never have indoor plumbing and SDG #6 will not be met in the Arctic region.

Arctic nations and communities have responded to the challenges of providing water and sanitation service in different ways. These include differences in planning, design and construction techniques; water and sanitation service expectations; regulations for water and wastewater; and use of subsidies to support the cost of operating sanitation systems. Further, climate and environmental change is forcing many communities to adapt to changes in
source water, infrastructure support and shorelines. These differences represent opportunities and both WIHAH and ARTEK events in 2016 were convened so that the Arctic communities could meet, compare experiences, learn from each other and develop new approaches that increase access to water and sanitation services and improve the health of Arctic residents.

Conference Themes

The WIHAH Conference was organized to promote learning and discussion among persons with a range of professional and personal experiences. Invited keynote speakers and presentations submitted by attendees were selected to address five conference themes to promote interdisciplinary learning. These five themes are described in the paragraphs below.

The First Theme – The first theme addressed the direct and indirect effects of household water and sanitation on Arctic human health. One presentation covered community perspectives on water insecurity in three remote Inupiaq villages in rural Alaska. Another addressed water infrastructure and its effect on health and well-being in the context of a First Nations community in northern Canada. A third presentation described significant declines in skin, respiratory, and gastrointestinal illness following the first-time provision of piped water to the homes in four rural Alaska Native communities. A fourth evaluated the association of gastrointestinal illness with contaminated stored household drinking water in a rural Canadian community. The final presentation covered health education and behavior change perspectives to maximize the health benefits of existing infrastructure.

The Second Theme – The second theme focused on climate change effects on water and sanitation systems across the North, with impacts on traditional and engineered water sources. The Arctic is experiencing thawing permafrost, rising sea levels, increases in the number and intensity of storm surges, saltwater intrusion into coastal groundwater, and northward movement of animal populations that bring with them new pathogens. Additionally, climate-related environmental changes have caused loss of tundra ponds and caused damage to water intakes and impoundments from sediments, ice and erosion. In this session, presenters
described these changes, identified key vulnerability points in water systems and urged managers to pursue water resource vulnerability assessments. Presenters also reviewed data collected from the Arctic Council Survey on Water and Sanitation in the Arctic, which documented the status of water and sanitation service and associated health outcomes, and described climate-related vulnerabilities and adaptation strategies for community water and sanitation systems and source water protection.

The Third Theme – The third theme highlighted innovative engineering approaches to increase access to water of adequate quality and quantity, including water reuse. Two engineers presented information about novel methodologies for treating wastewater from domestic and fish processing sources. A unique concept came from a university in Florida, where 100 percent of the water used in a student dormitory is treated and reused on-site. An Alaskan engineer shared new research on the generation of energy from household wastewater treatment systems, and others shared information about a pilot project to convert human waste to biofuel. Finally, an industry engineer presented information about a small community wastewater treatment system that may hold potential for Alaska villages.

Innovative Decentralized Approaches to Household Running Water & Sanitation Service

The conference also featured sessions on research and development of innovative decentralized approaches to household running water and sanitation service. In Alaska, there are four pilot systems in development or early trials, and each was showcased at the conference. Three systems are being developed as part of the Alaska Water and Sewer Challenge. These systems would all provide running water and sewer for a kitchen and bathroom sink, a toilet, a clothes washing machine and a shower. Performance targets include capital and operating costs, water quality and quantity, and constructability. Design teams reported on current progress toward meeting these targets. In addition, the Alaska Native Tribal Health Consortium (ANTHC) developed a pilot system which includes a bathroom sink and a toilet. This system is being field tested in the village of Kivalina, Alaska. Thirty people from remote Alaska villages attended the conference and each attended this session on demonstration systems. After
the conference, a special meeting was held with these village residents to gather their feedback and ideas on the systems.

The Fourth Theme — The fourth theme covered methods of ownership, operations and maintenance to maximize the useful operational life of existing water and sanitation systems in the Arctic. One speaker addressed how utility systems can apply energy efficiency improvements and risk assessment tools to improve system operation and maintenance. Another presenter discussed how outreach and education can improve a community’s knowledge and appreciation of its water system, thus extending the health benefits. Another presentation addressed methods to assess the affordability of water service at the household level and how this could be used in evaluating sustainability of a new community system. These examples included methods that have been implemented successfully in sanitation systems across the Arctic.

The Fifth Theme — Theme five covered regulations and policies affecting access to, and costs of, providing adequate quantities of in-home water. Although water and sanitation regulations differ across the Arctic, no Arctic Council member state has regulations on water reuse at the household level. The closest documents are 2012 Water Reuse Guidelines published by the United States Environmental Protection Agency. A risk-based framework for the development of public health performance standards for decentralized non-drinking water systems is being developed by the Water Environment Research Foundation (WERF) in Alexandria, Virginia. How these performance standards are accepted by the public may depend on an approach utilizing social change marketing, which could include greater involvement of communities and regional institutions to gain acceptance of water reuse within the home and the new WERF standards.

Ways Forward & Next Steps

The following are ideas and suggestions from WIHAH participants for the next steps needed to improve health of Arctic residents through improved access to water and sanitation services. These were the perspectives of individuals and do not necessarily represent the official recommendations of the conference supporters or national governments.

Innovations

- Continue to evaluate alternatives to centralized and fully piped systems (examples include household systems, separator toilets, and countertop drinking water treatment systems) for their suitability in isolated Arctic communities and their impact on human health. These alternatives could be components of future Alaska Challenge systems.
- Consider an integrated approach to introduce components of the Alaska Water and Sewer Challenge so the communities do not have to wait until the end of the piloting stage to see improvements in the level of service in their homes.
- Ensure new systems are simple and reliable.
- Research and develop ways to dispose of waste and to take advantage of waste
as a potential resource. One example suggested was biodigesters for Alaska villages that will provide both a method of disposing of human waste and a source of energy for the community. Another suggestion was composting waste to support food production.

Communications
• Create materials that describe the health impacts of inadequate access to water and sanitation service in Arctic communities that can be used to educate legislators and decision makers.

Seek community input (e.g. Alaska village residents) early and often when developing new approaches to water and sanitation services.

Addressing Changing Environments
• Develop a database of water and sanitation infrastructure, source water or treatment systems at risk from environmental or climate change.
• Conduct a comprehensive Arctic-wide hydrologic modeling and water resource assessment.
• Develop and implement a water resource vulnerability assessment.
• Review the findings of the 2008-2009 Alaska Climate Change Sub-Cabinet to consider current relevance or informative value.

Operations, Maintenance & Regulation
• Apply a scoring methodology that integrates risk and cost in order to prioritize further planning, monitoring and response efforts.
• Follow-up with the (WERF) for the development of public health performance standards for decentralized non-potable water systems that could be used in the Arctic.
• Evaluate the economics of providing a subsidy to remote communities for supporting operations and maintenance and preventing catastrophic system failures.

Building Local Capacity
• Encourage and support community planning efforts that specifically address climate change and its impacts on water and sanitation source water and infrastructure.

Members of the conference core planning group included Dennis Wagner, Tom Hennessy, Cheryl Rosa, Jonathan Bressler, Bill Griffith and Fatima Ochante
• Encourage and support emergency response preparations to ensure villages are ready to address water and sanitation-related disasters. Scenario planning may be a good activity to use in these preparations.

Addressing Health Concerns

• Quantify the economic consequences of inadequate access to in-home water and wastewater services, including direct health care costs (morbidity and mortality, health care expenses) and indirect costs, such as lower educational attainment due to illness, decreased subsistence and employment activities. Such analyses should include methods that account for the unique cultural context of the Arctic, including individual and cultural values.

• Conduct an assessment of how much water is needed per-person per-day to provide the best benefit for health in Arctic communities. In doing this, consider newer technologies not available in prior World Health Organization (WHO) water quantity standards. These could include low-flow faucets, separating or dry toilets, and water reuse methods that could conserve water and reduce cost for a similar gain in health. Also, consider the water related needs that can be centralized (e.g. laundry) versus those that must be available in the house (e.g. handwashing).

Circumpolar Cooperation

• Through the Arctic Council Sustainable Development Working Group and its Arctic Human Health Expert Group (AHHEG), Arctic states should cooperate to share data about water and sanitation access in their Arctic communities, as well as progress toward the Sustainable Development Goal #6.

• Through AHHEG, and through non-Council bodies such as the International Circumpolar Surveillance network, Arctic states should cooperate to track water-related infectious diseases (both water-borne and water-washed) in the Arctic region over time, and to study how changes in water and sanitation access affect these rates.

• The Arctic Council should continue to create forums for Arctic communities to share innovations in water and sanitation technology, cost management methods, and climate change adaptation strategies.

• Arctic states should cooperate with one another to assess the quantity of water needed for good health in the Arctic, and to consider adopting standards for providing adequate...
water quantity and engineering methods for achieving these standards.

Conclusion

In conclusion, both the WIHAH and ARTEK conferences were successful in promoting useful discussions among groups that do not usually interact, but have a shared interest in improving water and sanitation services. The suggestions for next steps provide a way forward and offer action items for groups ranging from local communities to the Arctic Council. The durable record of this Arctic Council project will include these conference proceedings and a special Arctic-themed issue of the journal, “Environmental Science and Pollution Research,” which will feature research articles written by attendees of the WIHAH and ARTEK meetings. Further progress on innovations in water and sanitation services can be found at the websites of the Alaska Water and Sewer Challenge and the U.S. Arctic Research Commission. The WIHAH sponsors and organizers sincerely thank the conference participants and hope that our efforts will be a step toward improving health for Arctic residents through the provision of in-home water and sanitation services for all.

References

Plenary speaker Danielle Arigoni
ORGANIZING COMMITTEE

Bill Griffith, Alaska Department of Environmental Conservation
Brian Bearden, Tanana Chiefs Conference
Brian Lefferts, Yukon-Kuskokwim Health Corporation
Carolyn Kozak, University of Alaska Fairbanks
Carrie Eischens, U.S. Arctic Research Commission
Cheryl Rosa, U.S. Arctic Research Commission
Dennis Wagner, U.S. Environmental Protection Agency
Elizabeth Hodges, University of Alaska Anchorage
Fatima Ochante, Alaska Department of Environmental Conservation
Jonathan Bressler, Alaska Department of Health & Social Services
Josh Glasser, U.S. Department of State
Korie Hickel, Alaska Native Tribal Health Consortium
Sharon Hildebrand, University of Alaska Southeast
Stephen Bolan, U.S. Indian Health Service
Tasha Deardorff, U.S. Department of Agriculture, Rural Division
Thomas Hennessy, U.S. CDC Arctic Investigations Program
Tim Thomas, Alaska Native Tribal Health Consortium
Presentation slides are available for download at http://wihah2016.com/presentations/
PRESENTATIONS

Opening Remarks

- Welcoming Remarks - Larry Hartig, Commissioner, Alaska Department of Environmental Conservation
- Opening Session - Bill Griffith, Facility Programs Manager, Alaska Department of Environmental Conservation

Keynotes

- An Introduction to the Arctic Council and the Sustainable Development Working Group - Ann Meceda, Arctic Affairs Officer, Acting Chair SDWG, U.S. Department of State
- Climate Change, Disaster Resilience and Relocation at HUD - Danielle Arigoni, Acting Director, HUD’s Office of Economic Resilience
- Climate Change Consequences - Eric Hoberg, US National Parasite Collection, Agricultural Research Service, US Department of Agriculture and Smithsonian Institution
- The Impact of Water and Sanitation Services on Health - Tom Hennessy, Director, Arctic Investigations Program, National Center for Emerging and Zoonotic Infectious Diseases, US Centers for Disease Control and Prevention
- Pathogen Risk Management Considerations for Safe Household Water Uses - Nick Ashbolt, Al-HS Transitional Health Chair in Water, University of Alberta School of Public Health
- Reuse Regulations and Challenges of Regulating On-site Systems - Guy Carpenter, President, WateReuse Association
- Water Security in the Arctic: Perspectives from the Model Arctic Council - Carolyn Kozak, Sharon Hildebrand, Stephen Penner

International Reception Presentations

- Arctic WASH Contributions from the Kingdom of Denmark – Greenland - Pernille Jensen & Kristian Hammeken, Centre of Arctic Technology, Department of Civil Engineering, Technical, University of Denmark
- A Bend in the River: Transitioning to a Time of Permanent Change - John Matthews, Alliance for Global Water Adaptation

Overview of Household Pilot Systems in Development

- Alaska Water Sewer Challenge – Phase 3: Team University of Alaska Anchorage (view animation), Aaron Dotson, Associate Professor, University of Alaska Anchorage

• **Alaska Water + Sewer Challenge: Water Innovations for Healthy Arctic Homes**, Summit Consulting Services

• **The Portable Alternative Sanitation System (PASS)**

Conference Theme: The Impact of Household Water & Sanitation on Arctic Human Health

• **Community Perspectives on Water Insecurity in Rural Alaska** - Laura Eichelberger, PhD, MPH, University of Texas at San Antonio

• **Education and Behavior Change Efforts to Maximize the Health Benefits and Sustainability of Water and Sanitation** - AJ Salkoski, Sr. Program Manager & John Nichols, Manager of Utility Operations, Alaska Native Tribal Health Consortium

• **Impact of In-home Piped Water on Rates of Infectious Disease – The Four Village Study** - Tim Thomas, Alaska Native Tribal Health Consortium, Centers for Disease Control and Prevention, Arctic Investigations Program

• **Water Infrastructure and Well-being: What Does the Data Tell Us?** - Melanie O’Gorman & Stephen Penner, University of Winnipeg MB, Canada

• **Water Quality and Health in Northern Canada: Contamination of Stored Drinking Water and Associations with Acute Gastrointestinal Illness in an Inuit Community** - Carlee Wright

Conference Theme: Climate Change Impacts on Water & Sanitation Infrastructure in the Arctic

• **Vulnerability of Northern Water Supply Lakes to Changing Climate and Demand** - Michael Bakaic, York University

• **Vulnerability of Fresh Water Supply in Arctic Canada** - Andrew Medeiros & Michael Bakaic, York University, Department of Geography

• **Climate Change and Community Water Security Emerging Challenges and Strategies** - Mike Brubaker, Alaska Native Tribal Health Consortium

• **Survey on Water and Sanitation in the Arctic: Access, Disease Surveillance, and Threats from Climate Change** - Jonathan Bressler, MPH, Section of Epidemiology, Division of Public Health, Alaska Department of Health and Social Services & Tom Hennessy, MD, MPH, Arctic Investigations Program, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention

Conference Theme: Innovative Engineering Approaches to Increase Access to Water of Adequate Quality & Quantity, Including Water Reuse

• **Charting a New Direction for Wastewater Treatment in the Canadian North** - Ken Johnson, Planner, Engineer and Historian, Cryofront

• **Natural Engineered Wastewater Treatment: NEWT** - Thomas Kasun, Natural Engineered Water Treatment
• Preliminary Test Results from an Electrically-Assisted, Anaerobic Sewage Treatment System – Bob Tsigonis, Lifewater Engineering Company & Yehuda Kleiner and Boris Tartakovsky, National Research Council of Canada

• Relocate: Kivalina Biochar Reactor – Jennifer Marlow & Michael Gerace, Re-Locate LLC

• Net-Zero Water: Energy-Positive Municipal Water Management – James Englehardt, University of Miami College of Engineering

• Potentials and Challenges of Biogas from Fish Industry Waste in the Arctic – Pernille Jensen, Arctic Technology Center, Department of Civil Engineering, Technical University of Denmark

Conference Theme: Regulations & Policies Affecting Access to and the Cost of Providing Adequate Quantities of Water in the Home

• EPA Regulations, Policies, and Guidelines for Water Reuse: Implications for Decentralized Greywater Reuse – Robert Bastian, Senior Environmental Scientist, Office of Wastewater Management, U.S. Environmental Protection Agency

• Greenland: Far from Reaching The United Nations Millennium Development Goals. Why? – Kåre Hendriksen, Arctic Technology Centre, Technical University of Denmark

• Beyond Education: Using Social Change Marketing to Drive Behavior Change – Kathy Anderson, MPRH, PhD, University of Alaska Anchorage, Alaska Pacific University, University of South Florida

• Sewer and Water Regulatory Reform in Alaska – Megan Alvanna-Stimpfle, Nome Port Commission

Conference Theme: Methods of Ownership, Operations & Maintenance to Maximize Useful Life of Water & Sewer Systems in the Arctic

• Techniques and Design to Adapt – Michael Black, Department of Rural Utility Management, Alaska Native Tribal Health Consortium

• Applying a Water Safety Plan Approach – Graham Gagnon, Kaycie Lane & Amina Stoddart, Civil and Resource Engineering, Dalhousie University

• A New Affordability Indicator for Rural Alaskan Water Utilities – Barbara Johnson, Ms Resource and Applied Economics candidate, School of Management, University of Alaska Fairbanks

• Maximizing Sustainability in Arctic Water and Sewer: Energy Efficiency – Gavin Dixon, Senior Project Manager, Alaska Native Tribal Health Consortium Rural Energy Initiative

• Water is Life Project – James Temte, Alaska Native Tribal Health Consortium, National Tribal Water Center & Alaska Rural Utility Collaborative
Country Comparisons: Water & Sanitation Service

- Country Comparisons
- Water and Sanitation Summary for Greenland - Kåre Hendriksen, Associate Professor PhD, Arctic Technology Centre, Technical University of Denmark
- Department of Health Nunavut - Michele LeBlanc-Harvard, EHS to the CMOH Territory of Nunavut
- Water and Sanitation Summary for Northwest Territories-Canada - Peter Workman, Chief Environmental Health Officer, Department of Health and Social Services, Government of Northwest Territories
- Water and Sanitation Summary for Yukon, Canada - Tyler Heal, EIT, Civil Engineering Lead, Yukon, Stantec Consulting Ltd.
- Water and Sanitation Summary for Alaska - Bill Griffith, Facility Programs Manager, Alaska Department of Environmental Conservation
- Peculiarities of Water Supply and Drinking Water Quality in the Russian Arctic - Cheryl Rosa on behalf of Alexey Dudarev, Head of Hygiene Department, Northwest Public Health Research Center, St. Petersburg, Russia.

[Note: This presentation is not available. Please refer to the abstract on page 73 for background and contact information.]
Megan Alvanna-Stimpfle was born and raised in Nome, Alaska. She is of King Island Inupiaq heritage and takes pride in Eskimo dancing and learning her language. She holds a master’s degree in applied economics from Johns Hopkins University and a Bachelor of science in economics from George Mason University. For five years, Alvanna-Stimpfle served as a legislative assistant for Senator Lisa Murkowski in Washington D.C., responsible for helping develop policies addressing infrastructure and sanitation, housing, health delivery, public safety and justice, land management, and fish and wildlife management for Alaska Natives and rural Alaskans. She helped organize the Arctic Imperative Summit to bring Arctic and Coastal Alaska issues to the forefront of American policy. Living in Nome, she serves on the Nome Port Commission and is an elected member of the King Island Traditional Council.

Kathryn Anderson holds adjunct faculty positions at the University of Alaska Anchorage (UAA), Alaska Pacific University, and the University of South Florida, where she teaches social change marketing, commercial marketing, and program management. She is the owner of Pescatore Systems International, an Anchorage-based consulting firm specializing in social change marketing and program evaluation. Anderson holds an interdisciplinary Ph.D. from the University of Alaska Fairbanks and a Master’s in Public Health from UAA. She also holds a Bachelor of Science degree in mathematics from Arizona State University, a Master’s in Computer Science from Rutgers University, and she completed the Harvard Business School Advanced Management Program in 1995. Anderson currently serves on the governing boards of Providence Alaska Health and the Allergy and Asthma Foundation Alaska Chapter. She resides in Anchorage and Homer with her husband.

Danielle Arigoni has been a leader in key federal efforts to expand investment in sustainability and resilience for almost two decades. She serves as acting director for the U.S. Housing and Urban Development (HUD) Office of Economic Resilience, which recently awarded $1 billion to states and localities to pilot resilient disaster recovery strategies considering climate risk. She serves as staff lead on the White House Council on Climate Preparedness and Resilience and for HUD Secretary Julian Castro’s Climate Council.
Nicholas Ashbolt received his Ph.D. in microbiology from the University of Tasmania in 1985 and specializes in applying microbial risk assessment to support guidelines and water safety plan management of urban water services. Since September 2013 he has been the Alberta Innovates-Health Solutions Translational Health Chair in Infectious Diseases (water), School of Public Health at the University of Alberta. Previously, he was the senior research microbiologist in the Office of Research and Development, U.S. Environmental Protection Agency, in Cincinnati, OH, (2007-2013); head of the School of Civil and Environmental Engineering (2005-2007), University of New South Wales, Sydney, where he was a professor (1994-2007) and deputy director of the Centre for Water & Waste Technology (1996-2005); and principal scientist (wastewater) from 1990 to 1994 at Sydney Water Corporation, Australia.

Dr. Ashbolt’s present research focuses on understanding the ecology of saprozoic pathogens in engineered water systems to develop improved management of Legionella, non-tuberculous mycobacteria and Pseudomonas aeruginosa within water safety plans. Through his career he has focused on translating microbiological risks into best management practices and regulatory reform; pioneering developments and uptake of quantitative microbial risk assessment (QMRA) into the World Health Organization’s (WHO) harmonized approach (Stockholm Framework) and its incorporation into Australian, Canadian, Scandinavian, American, and WHO drinking water, recreational water and reuse water guidelines and regulations. He has focused his research on filling research gaps identified by QMRA-derived performance targets used in water sanitation safety plans. This involves not only researching enteric pathogens, but also opportunistic (saprozoic) pathogens that grow in environmental media and engineered systems. He has a record of substantial research funding ($13 million) and has supervised 14 Master of Science and 23 Ph.D. students to completion, and is currently advising four Master of Science and two Ph.D. thesis students.

Michael Bakaic graduated from the Master of Environmental Studies program at York University. Through studies in Toronto and at the University of Alaska Fairbanks, Bakaic has focused his research on the development of water infrastructure in Canada’s North. His major project has been to conduct water supply forecasts for the communities in the Canadian territory of Nunavut. By developing novel climate and demand forecasting methods, his research has contributed to the development of water security in this territory.
Bob Bastian is a senior environmental scientist with EPA's Office of Wastewater Management in Washington, D.C., where he has worked for more than 40 years dealing with a wide range of wastewater and biosolids management issues associated with publicly owned treatment works and on-site wastewater treatment systems, such as innovative treatment processes, wastewater and biosolids reuse, decentralized wastewater treatment, water quality benefits of wastewater treatment, on-site power production and energy recovery, and toxics control, including coordinating the agency’s efforts to develop and update the EPA Guidelines for Water Reuse document. He has also served as an EPA liaison with numerous interagency workgroups and committees, as well as external groups such as the Water Science & Technology Board of the National Academy of Sciences, WEF, WE&RF, NWRI, WRF, WateReuse Association, and NSF International’s Joint Wastewater Committee. Bastian earned his Bachelor and Master of Science degrees in biology, earth sciences and mathematics from Bowling Green State University in Ohio. He also served as an officer in the U.S. Army Corps of Engineers before joining EPA in 1975.

Michael Black has overseen the Department of Rural Utility Management at the Alaska Native Tribal Health Consortium (ANTHC) since December 2012. Prior to this appointment, he was Director of Program Development for the consortium’s Division of Environmental Health and Engineering. Before joining ANTHC in 2010, in 2007 he was appointed as Deputy Commissioner for the Alaska Department of Commerce, Community and Economic Development. The previous 25 years he worked with rural communities on the issues of economic development, local governance, infrastructure development and financial management as a local government specialist for the Department of Community and Regional Affairs, and later as Director of the Division of Community and Regional Affairs in the Department of Commerce, Community and Economic Development. He has served on numerous committees, boards and task forces dealing with rural issues in his tenure with the State of Alaska, including the Rural Sanitation Task Force, Federal Field Work Group on Alaska Rural Sanitation, Alaska Climate Change Subcabinet, Immediate Action Work Group, Alaska Workforce Investment Board, and the Alaska Rural Action Subcabinet. He earned a Bachelor of Business Administration in business development from Ohio University (1970) and a Master of Management Studies in environmental management from Duke University (1974).
Jonathan Bressler is a Council of State and Territorial Epidemiologists fellow, working as an epidemiologist with the Environmental Public Health Program at the Alaska Department of Health and Social Services. He earned a Master of Science in public health in global epidemiology from Emory University, where he conducted his thesis on the impact of pit latrines on trachoma prevalence in Guinea. He served as a Peace Corps volunteer in Burkina Faso, Africa. Bressler enjoys writing, language, travel, hockey, skiing, hiking, playing music, GIS mapping, statistical analysis, and good food.

Mike Brubaker specializes in assessing health conditions in rural communities, focusing on environment, pollution, development, and climate change. Brubaker was born in Juneau, Alaska, and raised in Anchorage. He earned his Bachelor of Science in biology from St. Lawrence University in New York and a Master of Science in environmental management from the University of San Francisco. He was a Peace Corps volunteer in Hungary from 1995 to 1997. Since 1998 he has worked in the Alaska Tribal Health System. Before coming to the Alaska Native Tribal Health Consortium, he spent 10 years working for the Aleutian and Pribilof Islands Association, a regional tribal health consortium. He was a founding member of the Center for Climate and Health and started the Local Environmental Observer Network in 2011. Brubaker has been lead author on more than a dozen books and reports about climate change impact on rural Alaska communities. He publishes a weekly e-journal entitled, “The Northern Climate Observer.”

Guy Carpenter is a senior water executive whose 25-year career includes utility operations, water resources planning and management, public policy development, engineering consulting, elected public service, and bringing intellectual property to commercialization. He earned a Bachelor in Science in chemistry from Northern Arizona University and is a registered civil engineer in Arizona. Carpenter currently serves as a board member for the Central Arizona Project, which delivers Colorado River water to the three-county area in Arizona where 85 percent of the state’s population lives. He is also National WateReuse Association President, and has served on the association board for six years. He also serves on advisory boards for the University of Arizona Water Resources Research Center, and the Arizona State University Kyl Center for Water Policy at the Morrison Institute. Carpenter recently resigned from Carollo Engineers as its national water reuse technical practice director to become senior vice president of strategic operations for AquaTecture, which develops public-private partnerships for water and wastewater projects, bringing transformative intellectual property to market, and providing temporary staffing services for water and wastewater systems.
Gavin Dixon is a senior project manager for the Rural Energy Initiative at the Alaska Native Tribal Health Consortium (ANTHC). In this role, he manages energy auditing, energy efficiency projects and renewable energy projects for sanitation systems in rural villages across Alaska. He is also responsible for the development of an innovative energy efficiency training for sanitation operators in partnership with Alaska’s Institute of Technology. Dixon has been with ANTHC since 2011, working with the energy program since its inception.

Alexey A. Dudarev has been head of the hygiene department of the Northwest Public Health Research Centre in St-Petersburg, Russia, since 2000. He graduated from the St-Petersburg State Medical Academy in 1987. He has more than 20 years of experience studying environmental health conditions in the Russian Arctic. From 1987 to 2000 he was a researcher at the Research Institute of Radiation Hygiene, also in St. Petersburg, where he studied the problem of increased levels of natural and artificial radioactivity in the Russian Arctic, including consequences of Novaya Zemlja nuclear testing explosions and the Chernobyl disaster. Since 2000, he has been involved in research related to issues on the occurrence of persistent toxic substances in the Russian North, and health effects among the indigenous population. He has also organized and participated in multiple field expeditions throughout the Russian Arctic.

Dr. Dudarev is a key researcher in several international projects including the Arctic Monitoring and Assessment Program (AMAP) and Global Environmental Facility project called the “Persistent Toxic Substances, Food Security and Indigenous Peoples of the Russian North” (2001-2004); the AIA project “PTS in Kamchatka and Commander Islands” (2003-2004), and IPEN projects on PCBs and DDTs in the Russian Arctic (2006). Other accomplishments include co-authoring the First Regional Monitoring Report (Eastern Europe) for POPs Global Monitoring Plan under the Stockholm Convention (2008), and being the principal investigator from the Russian side of the AMAP Sustainable Development Working Group project called “Food and Water Security in the Context of Health in the Arctic” (2012-2013), and for the EU Kolarctic project “Food and Health Security in the Norwegian, Finnish and Russian Border Region” (2013-2016). Dudarev has been a member of the AMAP Human Health Assessment Group (HHAG) since 2002 and co-authored its “Human Health in the Arctic” reports from 2009 to 2015. He is a member of the International Union for Circumpolar Health and has written or co-authored more than 170 scientific publications addressing Arctic environmental health; exposure and effects of persistent toxic substances in the Arctic; Arctic food and water security; cancer epidemiology; indoor air quality; air ionization; and radiation ecology.
Laura Eichelberger holds a Ph.D. in cultural and medical anthropology from the University of Arizona, and a Master of Science in public health from Johns Hopkins Bloomberg School of Public Health. She is an assistant professor of anthropology at the University of Texas in San Antonio, and a former cancer prevention fellow at the National Cancer Institute. In her research, Eichelberger combines ethnographic and epidemiologic methods to examine the relationships between issues of water insecurity, energy security, sustainability, and health at different life stages. Throughout, she examines how people make sense of experiences of water insecurity through political, economic, and cultural frameworks.

Eichelberger’s interests in water and health brought her back to her home state of Alaska, where she has examined problems related to adequate water and sanitation in remote communities in Western and Northwestern Alaska for more than 10 years. Her current research investigates how climate change is affecting health through the built environment. She is also exploring how local definitions of sustainability and the concept of “community-based adaptation” inform responses by community leaders, government agencies, and private entities.

James Englehardt has been a professor of environmental engineering at the University of Miami since 1992. Previously, he was research engineer for Johns Manville Corporation’s filtration and minerals division (1983-1987), and field engineer for GE Water Treatment and Process Technologies (1978-1980). He serves on the EPA Science Advisory Board and Drinking Water Advisory Committee; the editorial board of the ASCE-ASME journal; and the Miami-Dade County Small Business Advisory Board for Architecture and Engineering. He has published 112 peer-reviewed journal articles and technical papers. Awards include the EPA NCEA Science Advisor’s Award; the AAAS-EPA Robert C. Barnard Environmental Science & Engineering Award for Advances in Risk Assessment; the University of Miami Johnson A. Edosomwan Outstanding Publication Award; and two Eliahu I. Jury Awards for excellence in research.

Graham Gagnon is a professor in the Department of Civil and Resource Engineering at Dalhousie University in Nova Scotia, Canada. He holds a Ph.D. in civil engineering from the University of Waterloo (1997) and a Bachelor of Engineering degree in environmental engineering from the University of Guelph in Ontario, Canada (1993). In 1998, Gagnon was hired as an assistant professor in civil engineering at Dalhousie University in Nova Scotia, Canada, and in 2002 he was awarded a Canada Research Chair in water quality and treatment. In 2006, he became the engineering faculty’s first Natural Sciences and Engineering Research Council (NSERC) of Canada Industrial Research Presenter biographies Chair, through a partnership between NSERC and Halifax Water. In 2012, this position was renewed with additional industrial partners, namely: Cape Breton Regional Municipality, LuminUltra, Ltd., CBCL,
Gagnon works closely with his students and research partners to deliver timely solutions that have broad impacts on the water industry. He has authored more than 125 peer-reviewed journal articles, 250 conference proceedings, and has supervised more than 50 graduate students in his 18-year career at Dalhousie University. In 2013, he was awarded the Fuller Award from the American Water Works Association through the Atlantic Canada section for his constructive leadership in the water industry.

Michael Gerace, artist and architect, is the co-director of Re-Locate, a transdisciplinary and global collective collaborating with the Inupiaq Eskimo and whaling community of Kivalina, Alaska, to develop strategies for village relocation due to rising seas and melting permafrost. Re-Locate brings public attention to the political, cultural, and environmental issues underlying relocation and the climate displacement of communities around the world. It also works with the village to initiate a community-led and culturally specific relocation.

Bill Griffith has managed State of Alaska Department of Environmental Conservation Division of Water facility programs since 2004. He holds a Bachelor of Science degree in civil engineering and English from Carnegie Mellon University, and a Master of Science degree in construction engineering from the University of New Mexico. After serving as a U.S. Peace Corps volunteer in Nepal, he spent 10 years helping design, construct and operate water and sewer systems on the Navajo Indian Reservation, and then with villages in Alaska's Interior. He worked as a program manager for the Alaska Native Tribal Health Consortium before coming to work for the state.

Kristian Hammeken has studied Arctic Technology (Bachelor of Engineering) and has focused on environmental aspects and planning from The Technical University of Denmark (DTU). Inuit and born in Scoresbysund, he spent his childhood in a little settlement called Kap Tobin where his family’s livelihood was hunting. Later he moved to the town of Scoresbysund and finished primary school, before attending Danish/Greenlandic college in South Greenland. He began studying engineering in 2006 in Sisimiut Greenland and finished in Denmark in 2015. Between 1998 and 2006, Kristian worked as a local firefighter and deputy in the leisure center for school children. In 2000 he worked as a reserve officer. He has four children and is working on completing his master’s degree in Environmental Engineering at Technical University of Denmark.
Larry Hartig is an attorney with more than 20 years of experience in environmental law, regulations, permits and land use issues. Prior to his appointment in 2007 as the Alaska Department of Environmental Conservation Commissioner, he was in private practice as an attorney with the Anchorage law firm of Hartig Rhodes Hoge & Lekisch. Joining the firm in 1983, he worked primarily on environmental, natural resources, and commercial matters. His practice included assisting clients in obtaining environmental and other permits for natural resource development projects, as well as those involving environmental compliance and cleanup of contaminated properties. Clients included government, private developers, industry, and Alaska Native Corporations. He also worked as a landman in the Alyeska Pipeline Service Company Land/Legal Department from 1972 to 1976. Hartig has a bachelor of arts degree from the University of Utah and received his law degree from Lewis & Clark College in Portland, Oregon. He is a member of the Exxon Valdez Oil Spill Trustee Council and the Alaska Bar Association, as well as being a former member of the Alaska Board of Forestry.

Tyler Heal was born and raised in Yellowknife, Northwest Territories. His family has been working in civil construction in Northern Canada since 1939. As Stantec’s civil engineering lead for the Yukon, he continues in this commitment to, and passion for, the North. Having lived and worked in the Northwest Territories, Nunavut and the Yukon (where he is currently based), his interests include community-based solutions to infrastructure challenges, the history and heritage of Northern Canada, and the contemporary issues faced by Northern and indigenous communities.

Kåre Hendriksen is associate professor at the Technical University of Denmark, Arctic Technology Centre (ARTEK) and is affiliated with the Arctic engineering study program. He divides his time between Sisimiut, Greenland, and Denmark, teaching courses on sustainable development, Greenlandic social studies, and planning. Hendriksen has also worked as a consultant for the Greenlandic Home Rule Government and managed local vocational schools in Greenland during the 1990s. Over the last 20 years, he has conducted research and innovation projects in Greenland on sustainable development with emphasis on the local development dynamic, including the economic aspects of settlements, the island’s economic character, trade possibilities, the interaction between the infrastructure level and business development, and governance and capacity building. Through his research, Hendriksen has collected empirical data in most Greenlandic settlements and often explored these locations with local hunters by boat or a dogsled team. Current activities in the Arctic focus on sustainable development in existing and new industries around infrastructure, business development and settlement patterns; capacity building and intercultural aspects of learning in relation to the role of consultants and governments in
processes of certification; and the role of professional knowledge. He is an accomplished facilitator and specializes in the processes of dialogue and learning in relation to social and technological change.

Tom Hennessy is Director of the Arctic Investigations Program for the US Centers for Disease Control and Prevention (CDC), a field station for infectious diseases in Anchorage, Alaska. Dr. Hennessy joined the U.S. Public Health Service in 1990 and served on the Navajo Reservation until he joined CDC in 1994. He graduated from Antioch College in Ohio, the Mayo Medical School in Minnesota, and Emory University’s Rollins School of Public Health in Atlanta, Georgia. He completed residencies in family and preventive medicine and is a graduate of the CDC Epidemic Intelligence Service. His interests include vaccine preventable diseases, food and waterborne infections, zoonotic infectious diseases and reducing health disparities. He was part of the Ebola outbreak response in West Africa in 2014 and 2015 and led an investigation of risk factors for Ebola transmission within households in Sierra Leone in West Africa. Hennessy is an affiliate faculty member of the University of Alaska Anchorage, Department of Health Sciences. He is also co-chair for the Arctic Human Health Experts Group, a multinational advisory group to the Arctic Council.

Korie Hickel is a senior environmental health consultant with the Alaska Native Tribal Health Consortium. She oversees environmental public health programs that address topics including healthy homes and air quality, water and sanitation, and brownfields and community environmental health. Undergraduate studies in international health, then earning a Master of Public Health degree through the University of California at Berkeley, equipped her efforts to partner with Alaska Natives and American Indians to address diverse water and sanitation public health issues through research, health education and promotion, and environmental health field work. Hickel’s interest in water and sanitation work focuses on human health, including access to adequate and sustainable water and sanitation services, and how residents use the provided services. She works on multi-disciplinary teams to incorporate health education and behavior change methods in water and sanitation projects and advances efforts to maximize health benefits provided by available water and sanitation technology.

Sharon Hildebrand An educational plan is the standard in Western culture. However, this long-term planning is not a new concept to indigenous people. In growing up along the Yukon River, Sharon learned early on that family members and people in her community were also planners and coordinators. For example, her grandmother knew the importance of seasonal planning, preparing for camp, and caring for the fish in the summer. She also learned the importance of helping where needed and treating people with respect. These values prepared her for her current educational endeavors, which includes earning her graduate degree in public administration. She also contributes to her
Pernille Erland Jensen has been affiliated with the Arctic Technology Centre (ARTEK) at the Department of Civil Engineering of the Technical University of Denmark since 2006. She heads the center’s research area on Arctic Environmental Engineering, and teaches undergraduate and graduate courses on Arctic environmental engineering topics in Greenland and Denmark. She has developed courses for ARTEK including field work courses in Greenland and e-learning courses and modules, which may be taken online. Pernille’s research sets off in the field of environmental engineering, and her goal is to contribute to develop solutions for sustainable management of residuals and prevent loss of resources from the technosphere of urban environments. In the Arctic context, her focus has been on developing technologies for safe domestic wastewater handling tailored for the small remote Arctic communities, and on safe and sustainable management of residuals from the dominant industries in Greenland: fish production and mining. She has been a member of the International Association for Cold Regions Development Studies since 2013, and she is also a member of the Thematic Network of Environmental Impact Assessment under the University of the Arctic. She has authored more than 40 scientific journal papers, supervised five Ph.D. students and participated in numerous national and international research and development projects.

Eric Hoberg is a field biologist and biogeographer who explores the history of the biosphere in a continuum across evolutionary and ecological time. Born in San Francisco, he was educated at the University of Alaska in biology (1971-1975) where a passion for high latitudes first developed. His graduate studies followed at the University of Saskatchewan, Canada (1979), and the University of Washington (1984). He has also worked at Oregon State University, the Atlantic Veterinary College, University of Prince Edward Island, and since 1990 in his current positions as a senior research zoologist and chief curator of the U.S. National Parasite Collection with the Department of Agriculture and appointment as the curator of parasitic nematodes at the Smithsonian Institution’s National Museum of Natural History. Field-based research over the past several decades has centered on the high northern latitudes spanning Siberia, Alaska, and the Central Canadian Arctic. Episodic climate change and ecological perturbation over the past 3 million years are examined as drivers of faunal assembly, structure and patterns of diversity. Integrated studies, field collections, museum archives and transboundary approaches are the baselines for defining pathogen biodiversity. The nature of historical processes emphasizes the impact of ecological perturbations and the necessity to anticipate the outcomes of accelerating climate warming and globalization on emergence of pathogens and diseases which now pose direct consequences for ecosystem integrity, and animal and human health.

Pernille Erland Jensen has been affiliated with the Arctic Technology Centre (ARTEK) at the Department of Civil Engineering of the Technical University of Denmark since 2006. She heads the center’s research area on Arctic Environmental Engineering, and teaches undergraduate and graduate courses on Arctic environmental engineering topics in Greenland and Denmark. She has developed courses for ARTEK including field work courses in Greenland and e-learning courses and modules, which may be taken online. Pernille’s research sets off in the field of environmental engineering, and her goal is to contribute to develop solutions for sustainable management of residuals and prevent loss of resources from the technosphere of urban environments. In the Arctic context, her focus has been on developing technologies for safe domestic wastewater handling tailored for the small remote Arctic communities, and on safe and sustainable management of residuals from the dominant industries in Greenland: fish production and mining. She has been a member of the International Association for Cold Regions Development Studies since 2013, and she is also a member of the Thematic Network of Environmental Impact Assessment under the University of the Arctic. She has authored more than 40 scientific journal papers, supervised five Ph.D. students and participated in numerous national and international research and development projects.

Eric Hoberg is a field biologist and biogeographer who explores the history of the biosphere in a continuum across evolutionary and ecological time. Born in San Francisco, he was educated at the University of Alaska in biology (1971-1975) where a passion for high latitudes first developed. His graduate studies followed at the University of Saskatchewan, Canada (1979), and the University of Washington (1984). He has also worked at Oregon State University, the Atlantic Veterinary College, University of Prince Edward Island, and since 1990 in his current positions as a senior research zoologist and chief curator of the U.S. National Parasite Collection with the Department of Agriculture and appointment as the curator of parasitic nematodes at the Smithsonian Institution’s National Museum of Natural History. Field-based research over the past several decades has centered on the high northern latitudes spanning Siberia, Alaska, and the Central Canadian Arctic. Episodic climate change and ecological perturbation over the past 3 million years are examined as drivers of faunal assembly, structure and patterns of diversity. Integrated studies, field collections, museum archives and transboundary approaches are the baselines for defining pathogen biodiversity. The nature of historical processes emphasizes the impact of ecological perturbations and the necessity to anticipate the outcomes of accelerating climate warming and globalization on emergence of pathogens and diseases which now pose direct consequences for ecosystem integrity, and animal and human health.

Pernille Erland Jensen has been affiliated with the Arctic Technology Centre (ARTEK) at the Department of Civil Engineering of the Technical University of Denmark since 2006. She heads the center’s research area on Arctic Environmental Engineering, and teaches undergraduate and graduate courses on Arctic environmental engineering topics in Greenland and Denmark. She has developed courses for ARTEK including field work courses in Greenland and e-learning courses and modules, which may be taken online. Pernille’s research sets off in the field of environmental engineering, and her goal is to contribute to develop solutions for sustainable management of residuals and prevent loss of resources from the technosphere of urban environments. In the Arctic context, her focus has been on developing technologies for safe domestic wastewater handling tailored for the small remote Arctic communities, and on safe and sustainable management of residuals from the dominant industries in Greenland: fish production and mining. She has been a member of the International Association for Cold Regions Development Studies since 2013, and she is also a member of the Thematic Network of Environmental Impact Assessment under the University of the Arctic. She has authored more than 40 scientific journal papers, supervised five Ph.D. students and participated in numerous national and international research and development projects.
Barbara Johnson is a graduate student in the Master of Science resource and applied economics program at the University of Alaska Fairbanks. Her current research centers on issues surrounding water resources in Arctic and Subarctic communities. She has also researched the costs and benefits of the development of water infrastructure for the United Nations University Institute for Water, Environment and Health.

Ken Johnson is a planner and engineer with more than 30 years of experience in planning and engineering in remote and cold regions. His experience and expertise includes community planning and water and sanitation infrastructure, including treatment, distribution, collection, and disposal, solid waste management, drainage management, and climate change adaptation. He has lived and worked in the Yukon, Northwest and Nunavut territories, and has completed work in more than 40 communities across the Northern Region.

Tom Kasun is a senior business development manager at the Alcoa Technical Center (ATC) near Pittsburgh, PA. For the past three years, he has been a member of ATC’s commercialization group, which helps companies match innovative, Alcoa-developed technology solutions with complex, recurring challenges. Two years ago, his role was expanded to include collaborating with third parties to grow the company’s Natural Engineered Wastewater Treatment (NEWT) technology. Prior to this, Kasun led the rolling lubrication and surface technology group where he developed a passion for reducing Alcoa’s environmental footprint through enabling water and oil reuse. He continues to be a thought leader in this area, and his experience in development, implementation and management of metalworking fluids has helped save Alcoa tens of millions of dollars each year through increased productivity, lower scrap and reduced lubricants usage. Kasun has been an integral member of the Alcoa lubricants commercial team since 1991. He holds five patents and recently served as chairman of the Alcoa Global Rolled Product patent committee managing the full life cycle of intellectual property from invention through licensing of patents and trade secrets. He has worked at ATC for 32 years. Prior to this, he worked in the metallization department at IBM in Endicott, NY, where he developed a “dry process” for etching metals to eliminate “wet chemicals” and process step elimination. He received his bachelor (1981) and masters (1983) degrees in chemical engineering from Pennsylvania State University.
Carolyn Kozak is a graduate student in Arctic and Northern Studies at the University of Alaska Fairbanks (UAF). Prior to moving to Fairbanks, she worked as a curator and public programmer for the Anchorage Museum at Rasmuson Center for more than six years. This practical application of history with the museum, through exhibition development and public engagement, sparked an intellectual curiosity for the circumpolar north and a sense of personal responsibility to its people, both past and present. Since joining the UAF campus, Kozak has been selected as a student ambassador to the University of the Arctic (UArctic), a cooperative network of universities, colleges, research institutes and other organizations concerned with education in the North. She participated in the first fully international Model Arctic Council in March 2016 and attended the UArctic Congress in St. Petersburg, Russia, as part of her student ambassadorship. Kozak’s research interests include national identities, image literacy, and media messaging of climate change.

Michele LeBlanc-Harvard has bachelor degrees in psychology and environmental health, applying her skill set in the fields of public and environmental health in Canada and the United States, She was an instructor in the environmental health program at Cape Breton University in Nova Scotia, Canada, where she enjoyed facilitating a love of environmental health in her students. LeBlanc-Harvard moved to the Arctic during a leave of absence from her position as an environmental health officer for Health Canada where she was part of the traveling public program. As an environmental health specialist for the chief medical officer of health for the Territory of Nunavut, she is responsible for developing Nunavut’s environmental health program, which includes developing new drinking water regulations. This is an important time in Nunavut’s population health development and she feels honored to contribute to these efforts. LeBlanc-Harvard has lived in the Arctic for seven years and now calls Iqaluit Nunavut home. She lives there with her three children and husband who works as an extreme guide. As a family, they enjoy dog sledding, snow sailing, ice fishing, skiing and camping.

Jen Marlow co-owns Re-Locate, joint developers of the Kivalina biochar reactor. She is also co-executive director of Three Degrees Warmer, a climate justice nonprofit; co-director of Re-Locate, a transdisciplinary global collective working in Kivalina, Alaska, to support village efforts to relocate; and an affiliate professor at the University of Washington School of Law. As a lawyer, Marlow has worked on landmark state and federal climate change lawsuits, advising clients and courts of the applicability of international human rights laws to climate change-related claims.
John H. Matthews is the Secretariat Coordinator and co-founder of the Alliance for Global Water Adaptation, which is hosted by the World Bank and the Stockholm International Water Institute (SIWI). His work blends technical and policy knowledge for climate adaptation and water management for practical implementation. He has worked on five continents and in more than 20 countries. He has written primarily on decision-making frameworks for adapting water infrastructure and ecosystems to climate impacts. He co-founded the #ClimateIsWater advocacy group, led by the World Water Council. Recent projects have included leading teams to develop green and climate bond resilience criteria for water investments, co-authoring a guidance and leading a global community of practice focused on mainstreaming climate adaptation into public water management institutions, developing climate-sensitive approaches to environmental allocations such as eflows, working with global policy instruments and institutions to embed water-climate knowledge into climate mitigation and adaptation initiatives, coordinating efforts to use finance mechanisms to implement nature-based solutions to climate adaptation, assembling curricula to build capacity around sustainable resource management, and exploring new economic tools to support integrated long-term planning. He is a columnist with OoskaNews, a senior water fellow at Colorado State University, and a courtesy faculty member of the Water Resources Graduate Program at Oregon State University. Previously, John started and directed global freshwater climate adaptation programs for WWF and Conservation International. He has Ph.D. in ecology from the University of Texas, where he studied long-distance migration of dragonflies.

Ann Mecedo is a Foreign Service Officer with the U.S. Department of State. She currently serves as an Arctic Affairs Officer for the Bureau of Oceans and International Environmental and Scientific Affairs, where she works as the U.S. Head of Delegation to the Sustainable Development Working Group of the Arctic Council. During the fall of 2016 she was the acting chair of this group, supporting the U.S. Senior Arctic Official and other key stakeholders on Arctic policy issues. Recently, Mecedo served as the political and labor officer in Casablanca, Morocco, working extensively on interagency programs addressing labor and social issues. She has also served in Germany, Slovakia, and Tunisia. She has an undergraduate degree from the University of California, Los Angeles, in mass communications and business, and earned a Master’s degree in Business Administration from the Haas School of Business at University of California, Berkeley.
Andrew Medeiros is an expert in freshwater ecology, biogeochemical processes, and Arctic environments. His research focuses on understanding the ecological trajectory of northern ecosystems in the past, present, and future. Research on the evolution of northern aquatic ecosystems over thousands of years enables him to make predictions and create models of future responses to environmental change. Medeiros is motivated by seeing science in action and has worked to build relationships and establish trust with First Nation and Inuit communities, each at the forefront of environmental change in the North. This allows him to combine quantitative modeling to examine issues of fresh water quantity and quality as it applies to northern communities. The data allows researchers to conduct risk analysis for municipal water supplies, and research areas of concern for local residents. His findings resulted in a fundamental shift in the way this knowledge is applied to water security challenges faced by northern communities. These research methods can be applied to freshwater resource assessments, fisheries management, and biomonitoring. Medeiros has received numerous awards, internships and grants throughout his career including the W. Garfield Weston Postdoctoral Fellowship in Northern Research in 2012 and 2013. He has contributed his Arctic expertise to 15 peer-reviewed scientific publications, and for regional and international television segments. He was also a scientific advisor and contributing author for The Economics of Ecosystems and Biodiversity, an initiative of the Arctic Council administered by the Conservation of Arctic Flora and Fauna. Medeiros is currently an adjunct professor in the Department of Geography at York University in Canada.

John Nichols has 19 years of experience with water and sewer design, construction and operations. He currently serves as manager of utility operations for the Alaska Native Tribal Health Consortium (ANTHC). He leads a department of 35 direct and 100 contract employees, providing engineering services and technical assistance to 150 rural Alaska community water and sewer systems. Technical assistance includes water plant operator training, energy efficiency training and retrofits, troubleshooting and operational engineering assistance, and emergency response. The department also provides full water and sewer management services to 27 rural Alaska communities through the Alaska Rural Utility Collaborative (ARUC), which provides customer billing and collections, water operator guidance, purchasing of supplies, rate setting and data collection for each member of the community, resulting in some of the most complete village water and sewer operational data in Alaska, especially in the areas of energy use and energy efficiency results. ARUC’s purpose is to empower communities in rural Alaska to sustainably provide safe water and sanitation services. Nichols is a licensed engineer who started his career as public works director in Dillingham, Alaska. He then joined ANTHC in Anchorage, Alaska, designing and building water and sewer system in Western Alaska villages. He has also worked as a field engineer at the Indian Health Service Fort Hall Field Office in Idaho, designing and building water and sewer mains on the Fort Hall Reservation, before returning to ANTHC in 2007.
Jim Nordlund was appointed by President Obama to the position of Alaska State Director for the U.S. Department of Agriculture, Rural Development (USDA-RD), in August 2009. Since then, USDA-RD has invested nearly $2 billion in Alaska’s rural communities in electric, telecommunications, and sanitation projects; community facilities; and housing, energy and business development. He has lived in Alaska for 33 years and was previously the owner of Nordlund Carpentry, a residential building contractor in Anchorage. His work in Alaska includes seven years as the director of public assistance, where he managed 500 employees and a $250 million budget, serving in the Alaska State House of Representatives, and being a commercial fisherman. Nordlund has a bachelor’s degree from St. John’s University in Minnesota and a Master of Public Administration from the University of Colorado. He lives in Anchorage with his wife and daughter.

Melanie O’Gorman is an associate professor in the University of Winnipeg Department of Economics. Her research and teaching are in the areas of macroeconomics and economic development. She is currently leading a research project which explores the determinants of high school graduation and achievement in the Canadian Arctic, and another on the financing of water infrastructure in Manitoba First Nations. She continues to conduct research related to hydroelectric development with the Wa Ni Ska Tan Hydro Alliance. O’Gorman also chairs the master of arts program in environmental, resource and development economics at the University of Winnipeg, which trains students in the area of sustainable development.

Stephen Penner is an experienced senior leader with tactical and strategic experience in building resilient communities. He is pursuing a master’s degree in development practice in indigenous development at the University of Winnipeg while maintaining ties to his 25 years of businesses development. His focus has been around building bridges between social business and the needs of healthy communities. This includes examining how access to healthy water infrastructure supports northern communities. He is also working with Professor Melanie O’Gorman researching existing positive community models that maintain healthy water infrastructures and discovering how they accomplish this feat. His recent summer placement was with the Cree Nation Government and it was built around two projects involving community consultations, with the main project involving the building of a framework for a trade and commerce agreement. The second project was to gather opinions on the idea of the “Cree Story,” which would authenticate and certify Cree arts and crafts. Stephen and his facilitation team conducted consultations with more than 18 Cree entities and economic development corporations, seven chiefs and councils, and meeting with entrepreneurial groups totaling 500 people across Eeyou Istchee Territory. After the WIHAH Conference, Stephen will present
a paper entitled “Gathering Circles for Indigenous Ecopreneurship Among First Nations Communities of Southern Quebec” at the International Summit of Co-World Cooperatives in Quebec City. The cooperative model is explored in the context of marketing traditional foods within a confederation of first nations. He is also employed at the University of Winnipeg, serving as the marketing liaison for athletics where he launched the Wesmen’s Indigenous Days. He also works as a volunteer with inner city high school students.

Robert Quick is a medical epidemiologist in the Waterborne Diseases Prevention Branch at the Centers for Disease Control and Prevention. He received his medical training at the University of California, San Francisco, obtained an MPH from the University of California, Berkeley, completed residencies in family practice and preventive medicine, and worked as medical director and clinician at the Indian Health Service hospital in Bethel, Alaska. For the past 25 years, he has worked at CDC, conducting research on the etiology, control, and prevention of enteric diseases in the developing world. His work on cholera in Latin America and Africa revealed the seriousness and extent of the problem of lack of access to safe water and sanitation in the developing world and inspired a research focus on waterborne diseases and their prevention. With colleagues at CDC and the Pan American Health Organization, he developed the Safe Water System, a simple, inexpensive household based water quality intervention, and has conducted field trials in Latin America, Africa, and Asia to establish the evidence base regarding its use and dissemination (www.cdc.gov/safewater). More recently, he has conducted field trials of other water treatment technologies, and has designed, implemented, and evaluated projects that integrate water treatment technologies, handwashing, and other public health interventions (including micronutrient Sprinkles, improved cook stoves, HIV counseling and testing, rapid syphilis screening, and nurse training) with maternal and child health services, school programs, and HIV care and support services. To carry out this work in the developing world, he has collaborated with numerous partners from the public and private sectors, Rotary Club, NGOs, UN agencies, and academic institutions.

AJ Salkoski is senior program manager for the Alaska Native Tribal Health Consortium (ANTHC) Tribal Air Quality & Healthy Homes Programs and has eight years of environmental health experience in Alaska. He works on several government-funded studies and projects to find the relationship between indoor air quality and the need for respiratory medical care among high risk Alaska Native children, and to work on air quality issues in Alaska Native communities. He also has experience with projects focused on solid waste management, community planning, and energy efficiency in rural Alaska communities.
James Temte is a member of the Northern Cheyenne Tribe and grew up in the Rocky Mountains of Wyoming and Colorado. He joined the National Tribal Water Center (NTWC) in 2014 and now serves as its director. Temte earned his undergraduate degree in molecular biology and chemistry from Fort Lewis College in Colorado, and a Master of Science at the University of Alaska Anchorage in applied environmental science and technology. He was the Alaska Tribal Conference on Environmental Management Director, National Tribal Air Association Vice Chair, and served on the Climate Registry Board of Directors. He has a passion for public art, tribal sovereignty, self-determination, protecting the environment, and human health. His interest in water and sanitation work focuses on human health, including affordable access to adequate and sustainable water and sanitation services. He loves to work with communities on multidisciplinary teams to incorporate innovative health education techniques to inspire positive actions.

Tim Thomas, M.D., works as Clinical and Research Services Department Director in the Native Tribal Health Consortium (ANTHC) Division of Community Health Services. He has expertise as a medical epidemiologist with considerable clinical and research experience in Kenya and Alaska, addressing issues of health disparity among impoverished and minority populations. His clinical experience has involved work in Somalia for the “Doctors Without Borders” program in Kenya at a mission hospital, and at the Yukon Kuskokwim Health Corporation in Bethel, Alaska. He completed the Centers for Disease Control and Prevention (CDC) Epidemic Intelligence Service training in 1999 and has subsequently been primarily engaged in research. He worked in Kenya for seven years as head of an HIV research department at the Kenya Medical Research Institute (KEMRI) CDC Field station. As principal investigator of this CDC-sponsored phase 2B clinical trial, he investigated the use of antiretrovirals during late pregnancy and breastfeeding. Dr. Thomas returned to Alaska in 2008 to work with the CDC Arctic Investigations Program, primarily on water and sanitation and oral health issues. In October 2011, he joined ANTHC as director of its clinical and research services department where he has continued his work on oral health and sanitation, along with other research activities.

Bob Tsigonis earned a Bachelor of Science in engineering from Thayer School of Engineering at Dartmouth College in New Hampshire and a master’s degree from the University of Alaska Fairbanks. He is a registered engineer who has practiced environmental engineering in Alaska since 1973. Tsigonis founded Lifewater Engineering Company, which manufactures innovative on-site sewage treatment systems for extremely cold climates and poor soils. He holds U.S. and Canadian patents on these sewage treatment systems and a U.S. patent on a fluid distribution box that distributes fluid equally from all ports, regardless of the orientation of the box. Lifewater also
manufactures extremely rough duty boats for the shallow rivers of Alaska. He helps teach a cold region engineering short course for the University of Washington in Seattle and enjoys volunteering with organizations that provide water and sanitation services to people in underdeveloped areas around the world.

Peter Workman became the chief environmental health officer in the Northwest Territories in 2015. Prior to that, for 10 years he worked as a health emergency planner, environmental health consultant, and environmental health officer in Nunavut. He has experience working in rural, urban and remote regions in Canada with public health as his focus, in the areas of drinking water, sanitation, communicable disease investigation and food safety. Workman is a member of the Canadian Drinking Water Committee, which is the federal provincial and territorial group that authors Canadian Drinking Water Quality Guidelines, a national set of standards used to govern drinking water across Canada.

Carlee Wright completed her baccalaureate degree at the University of Guelph in Ontario, Canada, in 2014, majoring in biological science. She is a thesis-based master of science student in epidemiology at the Ontario Veterinary College, working with Dr. Sherilee Harper. Her research focuses on drinking water and acute gastrointestinal illness (AGI) in northern Canada, in the Inuit community of Rigolet, Nunatsiavut. Her project makes use of an EcoHealth research framework to assess the contamination of stored drinking water and its possible associations with self-reported AGI, and aims to understand drinking water consumption patterns in Rigolet and how they have changed, resulting from new drinking water infrastructure in the Canadian Inuit community. The goal of this work is to help inform sustainable drinking water interventions to reduce risk of waterborne infections, and to inform risk assessments and public health messaging in Nunatsiavut and other Northern indigenous communities.
Greenland and Norway participants Kristian Hammeken, Kåre Hendriksen and Pernille Jensen
ABSTRACTS

Water and Sanitation in the Arctic

- Healthy Alaskans 2020 estimates that in 2010, 78% of rural Alaskan homes had water and sewer service.
 - Among all Alaskan homes, 95.8% have complete plumbing.
 - Among all U.S. homes, 79.6% have complete plumbing.

- Access to water and sewer is still inadequate, and SSG still for access to water and sewer service for all has not been achieved in the Arctic region.

- Higher water service has been associated with lower cases of water-related disease in the Arctic, such as skin and respiratory tract infections.
ABSTRACTS TABLE OF CONTENTS

Plenary Presentations

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>Accelerating Climate Change and a Warming World: Consequences for Sustainability and Safety of Arctic Water and Food Resources</td>
</tr>
<tr>
<td>44</td>
<td>Pathogen Risk Management Considerations for Safe Household Water Uses</td>
</tr>
<tr>
<td>45</td>
<td>Reuse Regulations and Challenge of Regulating On-site Systems</td>
</tr>
<tr>
<td>45</td>
<td>The Impact of Water and Sanitation Services on Health</td>
</tr>
<tr>
<td>46</td>
<td>Water Security in the Arctic: Perspectives from the Model Arctic Council</td>
</tr>
</tbody>
</table>

The Impact of Household Water & Sanitation on Arctic Human Health

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>Community Perspectives on Water Insecurity and Climate-Related Vulnerabilities in a Remote Ḩiñupiaq Community</td>
</tr>
<tr>
<td>48</td>
<td>Education and Behavior Change Efforts to Maximize the Health Benefits and Sustainability of Water and Sanitation Infrastructure</td>
</tr>
<tr>
<td>49</td>
<td>Impact of In-home Water Service on the Rates of Infectious Diseases: Results from Four Communities in Western Alaska</td>
</tr>
<tr>
<td>50</td>
<td>Water Infrastructure and Well-being: What Does the Data Tell Us?</td>
</tr>
<tr>
<td>51</td>
<td>Water Quality and Health in Northern Canada: Contamination of Stored Drinking Water and Associations with Acute Gastrointestinal Illness in an Inuit Community</td>
</tr>
</tbody>
</table>

Climate Change Impacts on Water & Sanitation Infrastructure in the Arctic

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>Vulnerability of Northern Water Supply Lakes to Changing Climate and Demand</td>
</tr>
<tr>
<td>53</td>
<td>Vulnerability of Freshwater Supply in Arctic Canada</td>
</tr>
<tr>
<td>54</td>
<td>Climate Change and Community Water Security: Emerging Challenges and Strategies</td>
</tr>
<tr>
<td>55</td>
<td>International Survey on Water and Sanitation in the Arctic</td>
</tr>
</tbody>
</table>

Innovative Engineering Approaches to Increase Access to Water of Adequate Quality & Quantity, Including Water Reuse

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>Charting a New Direction for Wastewater Treatment in Nunavut</td>
</tr>
<tr>
<td>57</td>
<td>Natural Engineering Wastewater Treatment for Alaska Villages</td>
</tr>
<tr>
<td>59</td>
<td>Preliminary Test Results from an Electrically-Assisted, Anaerobic Sewage Treatment System</td>
</tr>
<tr>
<td>60</td>
<td>The Kivalina Biochar Reactor: The Arctic’s First Human Waste Bioreactor</td>
</tr>
<tr>
<td>61</td>
<td>Potentials and Challenges of Biogas from Fish Industry Waste in the Arctic</td>
</tr>
</tbody>
</table>
Regulations & Policies Affecting Access to, & the Cost of, Providing Adequate Quantities of Water in the Home

EPA Regulations, Policies, and Guidelines for Water Reuse: Implications for Decentralized Greywater Reuse
Greenland - Far from Reaching the United Nations Millennium Development Goal - Why?
Beyond Education: Using Social Change Marketing to Effect New Behaviors
Proposed Reforms to Alaska Water & Sewer Improvement Efforts

Methods of Ownership, Operations & Maintenance to Maximize Useful Life of Water & Sewer Systems in the Arctic

Techniques and Design of Building to Make It More Compatible With This New Arctic Environment
Applying a Water Safety Plan Approach to Small Systems in Northern Canada
A New Affordability Indicator for Rural Alaskan Water Utilities
Affordable Sustainable Sanitation Through Energy Efficiency
National Tribal Water Center

Country Comparisons

Peculiarities of Water Supply and Drinking Water Quality in the Russian Arctic
(Note: Abstracts for Country Comparison Overview; Greenland; Canadian regions of Nunavut, Northwest Territory and Yukon; and Alaska are not available - please refer to presentations for information. Presentation for Russia is not available - please refer to the abstract on page 73 for background and contact information.)

Overview of Household Pilot Systems in Development

State of Alaska Department of Environmental Conservation: The Alaska Water & Sewer Challenge Project Teams:

University of Alaska Anchorage (UAA) Team
DOWL Alaska Team
Summit Consulting Services Team
PLENARY PRESENTATIONS

TITLE
Accelerating Climate Change and a Warming World: Consequences for Sustainability and Safety of Arctic Water and Food Resources

PRESENTER
Eric P. Hoberg
Agricultural Research Service, USDA, Animal Parasitic Diseases Laboratory, BARC East 1180, 10300 Baltimore Avenue, Beltsville, MD 20705
Eric.Hoberg@ars.usda.gov

CONCLUSIONS
Dramatic environmental and ecological perturbations have swept across Arctic latitudes as global warming has accelerated over the past 50 years. Climate change is now strongly modifying physical environments with direct and indirect impacts that cascade through terrestrial, aquatic and marine systems. Northern latitudes historically have been dominated by events of extreme climate variation, such as those characterizing earth history and cycles of glaciation over the past 3 million years. These episodic events resulted in the world around us and the diversity of plants and animals that have come to symbolize the far north and which remain the cultural focus of traditional subsistence lifestyles across the circumpolar region. Climate determines activity and distribution, timing of migrations, and the seasonally circumscribed windows that define life histories for a diverse interconnected assemblage of fishes, birds, mammals and invertebrates. The northern world is now in rapid transition that is historically unprecedented. Perturbations to this natural world, particularly new patterns of temperature, precipitation and humidity, sea-level rise and marine incursions, directly influence ecosystem structure and the occurrence of pathogens. Disruption of long established biotic connections and development of new pathways for pathogen transmission serve as the potential for emerging diseases in animals and humans related to surface water resources and subsistence food chains. Interacting with overall habitat change and other biotic and abiotic factors, the potential for disease can have an influence on the availability and consistent access to potable drinking water and sustainable, safe and secure food resources on which northern communities are dependent. Accelerating environmental change associated with increasing rates of anthropogenic perturbation is exerting a pervasive impact on the Arctic Region. Recognition of the biotic impacts of climate warming can contribute to active anticipation, adaptation and mitigation of the emerging effects of environmental disruption and changing pathogen distribution for northern communities.
CONCLUSIONS

In general, about 80 percent of all infectious diseases are environmentally transmitted, with viral illnesses dominating. In developed regions, like the United States, the annual rate of water-associated diarrhea runs at about 0.7 cases per 100,000, and results in about 5,000 deaths by year from enteric (waterborne) pathogens. However, water-based, environmental pathogens (e.g. Legionella pneumophila, non-tuberculous mycobacteria and Pseudomonas aeruginosa) cause some 7,000-20,000 deaths by year in the United States, mostly from respiratory and wound infections. For remote Arctic communities with very limited access to clean liquid water and sanitation systems, there are additional infectious disease issues including from a lack of wash-water, which is compounded by social and cultural conditions. For example, sharing clothes washing machines in confined washetarias is known to increase respiratory disease, but inadequate clothes and body washing increases skin infections. However, simply installing traditional centralized water and wastewater services is neither economically sustainable nor practical for remote communities often lacking trained personnel and who are unable to maintain such infrastructure. Though widely recognized that water services need to integrate social, cultural and economic factors so as to provide effective solutions, various groups working with remote aboriginal Arctic communities have largely not succeeded in achieving that goal. Furthermore, there are often large voids between groups working on community health and those deciding on water and sanitation service innovation. Of the myriad of factors to consider, a key engineering question is, “What is the per capita drinking versus household water requirement for good health, and how can water services be managed effectively?” Current targets may range from 100-L per person per day (pppd) to the World Health Organization (WHO) suggesting a minimum of 50-L pppd. In considering what constitutes safe drinking and washing water quality, we need to move beyond outdated reliance on E. coli criteria (say < 1 per 100 mL of drinking water, and <200 if not <10,000 per 100 mL of treated wastewater), which are not based on site-specific risk assessment approaches (e.g. to achieve WHO tolerable annual health burden of < 1 disability adjusted life year [DALY] per million people), and are likely to result in systems meeting criteria but delivering unacceptable levels of pathogens to consumers. Furthermore, when considering pathogens that are largely person-to-person spread but potentially also via water systems, such as Helicobacter pylori, overall health benefits versus the need to treat are not simple decisions. This presentation will provide a systematic approach to design potable and non-potable household...
waters to meet disease burden benchmarks within a community, as a guide to those seeking input to improve the knowledge base, management, and health targets for remote Arctic communities.

Key words: Rainwater, drinking water, blackwater, greywater, quantitative microbial risk assessment, water and sanitation safety plans

TITLE

Reuse Regulations and Challenge of Regulating On-site Systems

PRESENTER

Guy Carpenter

CONCLUSIONS

Abstract not available. For more information contact Guy Carpenter at gcarpenter@aqua-tecture.net or (424) 832-7017.

TITLE

The Impact of Water and Sanitation Services on Health

PRESENTER

Dr. Thomas Hennessy
CONCLUSIONS

Important health disparities have been documented among northern populations with limited access to in-home improved drinking water and sanitation services. The Arctic Council recognized this in 2016 by endorsing the initiative entitled “Improving Health through Safe and Affordable Access to Household Running Water and Sewer in Arctic and Sub-Arctic Communities.” This presentation will review the evidence linking water to health, with a focus on water-borne and water-washed diseases. We will also explore the water-health relationship and the implications for how we design and operate water systems, how we evaluate the benefits of water service and how we work with communities and homeowners to maximize the benefits of water services.

TITLE

Water Security in the Arctic: Perspectives from the Model Arctic Council

PRESENTERS

Carolyn Kozak, Graduate Student
Arctic and Northern Studies, University of Alaska Fairbanks

Sharon Hildebrand, Graduate Student
School of Business, University of Alaska Southeast

Stephen Penner, Graduate Student
Development Practice in Indigenous Development, University of Winnipeg

CONCLUSIONS

This presentation will discuss the perspectives of students who attended the first fully international Model Arctic Council (MAC) in March 2016. This was held in conjunction with the Arctic Science Summit Week (ASSW) at the University of Alaska Fairbanks. The ASSW brought researchers, traditional and local knowledge holders and policymakers together to advance research objectives in the Arctic. The MAC is an experiential learning exercise in which undergraduate and graduate students of institutions from around the world gather to represent and simulate the work of the Arctic Council member states, permanent participants, and observers. The perspective of three student representatives to the MAC will be shared as they considered the new Arctic Council initiative called “Improving Health through Safe and Affordable Access to Household Running Water and Sewer” (Arctic WASH). Their experiences participating in the simulation and the resulting recommendations to the Fairbanks declaration at the MAC conclusion will be shared. These actions focused on three themes: social justice, economic sustainability, and environmental protection. Strong local participation in water and sewer projects was deemed vital, with special emphasis given to the role
of traditional local knowledge and traditional ecological knowledge holders in the planning and implementation process. International cooperation was also heavily stressed, encouraging complete participation in international water and sewer conferences, comprehensive reports on climate change vulnerabilities and adaptation strategies needed, and the need for established metrics and best practices for monitoring implementation.

THE IMPACT OF HOUSEHOLD WATER & SANITATION ON ARCTIC HUMAN HEALTH

TITLE
Community Perspectives on Water Insecurity and Climate-Related Vulnerabilities in a Remote Iñupiaq Community

PRESENTER
Laura Eichelberger, MPH, Ph.D., University of Texas at San Antonio

INTRODUCTION & METHODS
Less than five years ago, the sound of running water finally became a daily reality for most residents in the Village of Buckland, a small Iñupiaq community just south of the Arctic Circle in Northwest Alaska. Based on a total of over two years of ethnographic fieldwork during the years of 2008, 2009, and 2016, involving interviews, observations, and surveys, I examined what daily life was like for residents prior to the completion of the running water and sewer system, and how life has changed since its near completion this year.

RESULTS
In 2008 and 2009, a survey of 21 households revealed that residents consumed an average of less than three gallons per person, per day. The amount of water they had access to depended on a combination of physical ability, access to gasoline or a vehicle, and male kin. In 2016, Buckland residents overwhelmingly reported an improvement in public health, particularly among their children who they report are sick less often. They attribute these observed improvements in health on increased access to clean water, which has improved their ability to maintain clean living conditions. Many residents, however, fear that the rapid rate of erosion and the lack of erosion prevention near the new system represents a significant threat to their newly constructed infrastructure.

This study provides local perspectives on the importance of clean water access, and concerns about climate-related vulnerabilities. It also highlights how anthropological methods can be used to study the status of water and sewer service, health outcomes, and climate related vulnerabilities.
TITLE

Education and Behavior Change Efforts to Maximize the Health Benefits and Sustainability of Water and Sanitation Infrastructure

PRESENTERS

Korie Hickel: Presented by John Nichols and AJ Salkoski

INTRODUCTION

The Indian Health Service (IHS) has provided water and sanitation infrastructure in American Indian and Alaska Native (AI/AN) communities since 1958 with the goal to prevent water- and sanitation-related disease. However, challenges remain as some communities still lack piped service, residents don’t always use available services, and utilities communities struggle to operate and maintain their water and sewer systems. This evidence suggests that an ecological approach made up of education, engineering, and support at all levels of the community is needed.

METHODS

The Alaska Native Tribal Health Consortium (ANTHC) has established several programs that target all levels of the community: individuals (residents, operators, managers); social and community networks (families, neighbors, opinion leaders); and social systems (councils, utilities, collaboratives).

RESULTS

ANTHC efforts to improve customer knowledge resulted in increased knowledge, increased payments of bills, decreased operations and maintenance O&M issues, and decreased utility debt. Health education and promotion efforts resulted in improvements in healthy behaviors and outcomes. Efforts to increase consumption of treated water showed a significant increase pre- to post-intervention (39-60 percent). Preliminary results from a healthy homes study also found improved health such as reduced hospitalizations and clinic visits following the intervention.

CONCLUSIONS

The health benefits of sanitation systems are greatly impacted by how they are used, operated, and managed long term. ANTHC supplements engineering and construction services with education and behavior change efforts to maximize the health benefits and sustainability of the provided infrastructure.

This presentation will give an overview of ANTHC’s education, promotion, and behavior change efforts; lessons learned; and steps forward to further improve
our services and work to achieve the vision that Alaska Native people are the healthiest people in the world.

Title
Impact of In-home Water Service on the Rates of Infectious Diseases: Results from Four Communities in Western Alaska

Presenters

Background
About 20 percent of rural Alaskan homes lack in-home piped water so residents must haul water to their homes. Recent studies in Alaska demonstrated associations between increased rates of skin and respiratory tract infections and lack of in-home piped water, presumably due to a reduced quantity of water available for handwashing, bathing and laundry, resulting in what are known as “water-washed” infections. We assessed rates of water-related infections in residents of communities transitioning to in-home piped water.

Methods
Residents of four communities consented to a review of medical records for the period three years before and three years after their community received piped water. We selected clinic and hospital encounters with ICD-9CM codes for respiratory, skin and gastrointestinal (GI) infections, and calculated annual illness episodes for each infection category after adjusting for age and removing repeat encounters within 14 days of the initial report.

Results
We enrolled 1,032 individuals (72 percent of the 2,010 total among a four-community population) and obtained 5,477 person-years of observation. There were 9,840 illness episodes with at least one ICD-9CM code of interest; 8,155 (83 percent) respiratory, 1,666 (17 percent) skin, 241 (two percent) GI. Water use increased from average 5.7 liters, per capita, per day (l/c/d) to 97.3 l/c/d. There were significant (p-value <0.05) declines in respiratory [16.4 percent, 95 percent confidence interval (CI): 11.5-21.0 percent], skin (20.4 percent, 95 percent CI: 10.0-29.7 percent), and GI infections (37.8 percent, 95 percent CI: 13.3-55.3 percent) in homes that received piped water, primarily among those aged 0-19 years.
DISCUSSION

Households that must haul water are severely limited in the amount of water available for personal hygiene. We demonstrated significant declines in respiratory, skin and GI infection rates among individuals in communities that transitioned from hauling water to in-home piped water. This study reinforces the importance of adequate quantities of water to address the morbidity caused by water-washed infections.

TITLE

Water Infrastructure and Well-being: What Does the Data Tell Us?

PRESENTERS

• Stephen Penner, Master of Development Practice (Indigenous Development) student, University of Winnipeg
• Melanie O’Gorman, Associate Professor, Department of Economics, University of Winnipeg

INTRODUCTION

In this presentation, we will discuss the findings of three statistical analyses relating data on water infrastructure and well-being in First Nations, Métis and Inuit communities in Canada. The question our study addresses is: Are poorer quality water/wastewater systems associated with poorer health outcomes in Canada, and if so, to what extent?

METHODS

Our first analysis explores the relationship between self-reported health among individuals off-reserve using two waves (2001 and 2006) of the Aboriginal Peoples Survey (APS). We then conduct a similar analysis using the First Nations Regional Health Survey (RHS). This wide-ranging dataset allows us to control for a larger number of factors influencing health relative to the APS, for example, the extent to which a community is remote, an individual’s emotional well-being, and the quality of governance. The third analysis uses data collected jointly by our research group and St. Theresa Point First Nation. This data includes information from a survey among individuals, and thus allows us to better understand community members’ concerns about the quality of their water and wastewater services, and how such inadequate services affect them.

RESULTS

We find large, negative impacts of unsafe drinking water, a lack of indoor plumbing and the use of cisterns on self-reported physical and mental health.

CONCLUSIONS
These three analyses demonstrate that inadequate access to water and wastewater services disadvantage residents in multiple ways, or rather, that having indoor plumbing, safe drinking water and proper sanitation facilities have wide-ranging and large benefits. This paper sheds light on the magnitude of health costs resulting from a lack of water access and poor water quality in First Nations, Métis and Inuit communities.

INTRODUCTION

One of the highest self-reported incidence rates of acute gastrointestinal illness (AGI) in the global peer-reviewed literature occurs in Inuit communities in the Canadian Arctic. This may be, in part, due to the consumption of contaminated drinking water. For instance, in many communities, water is stored in containers, which may result in secondary water contamination. Using an EcoHealth research framework, the goal of this study was to characterize how households stored drinking water, identify potential risk factors for contamination, and examine possible water-related associations with AGI in Rigolet.

METHODS

A retrospective, cross-sectional census survey was conducted in June 2014, capturing data on water storage, potential demographic and behavioral risk factors, and self-reported AGI. Water samples were collected from storage containers and analyzed for presence of total coliforms.

RESULTS

Most households stored drinking water in containers despite the availability of tap water, and 25.2 percent (95 percent CI 17.7-34.7 percent) of stored samples tested positive for coliforms. Transfer devices were significantly associated with increased...
odds of coliform presence. The annual incidence rate of AGI was 2.43 cases per person, per year (95 percent CI 1.76–3.10); however, no water-related risk factors for AGI were identified.

CONCLUSIONS

Potential exposure to waterborne pathogens may be reduced through simple household-level interventions, such as regular cleaning of transfer devices.

CLIMATE CHANGE IMPACTS ON WATER & SANITATION INFRASTRUCTURE IN THE ARCTIC

TITLE
Vulnerability of Northern Water Supply Lakes to Changing Climate and Demand

PRESENTERS
M. Bakaic, A.S. Medeiros

METHODS

Arctic regions face a unique vulnerability to shifts in seasonality, which will influence the summer recharge potential of freshwater reservoirs from decreased precipitation and increased evaporative stress. This pressure puts many northern communities at risk due to limited existing freshwater supply. However, many small, remote northern communities in Canada lack baseline knowledge of their own existing supply, demand, or knowledge of reservoir recharge potential. We therefore address this knowledge gap through a water resource assessment of municipal supply over a 20-year planning horizon in two of the largest populated communities in Arctic Canada using existing data sources. Forecasts are made for several climate and demand scenarios. Generated models found significant and immediate vulnerability of the end-of-winter freshwater supply. This was pronounced for climate scenarios indicating reduced winter precipitation and/or increased ice thickness of reservoirs. Our heuristic supply forecasts indicate an immediate need for freshwater management strategies for northern communities in Canada.

The development of our novel Long Term Forecasting (LTF) protocol employed climate and growth scenarios which were intended for applications where historical in situ data was limited and in situations of limited local funding and capacity for conducting water resource assessments. While these limitations restrict in-depth fieldwork and detailed assessments, they do not preclude the immediate need for supply forecasting. The LTF protocol can provide heuristic supply forecasts able to be expanded in detail based on the severity of vulnerability presented.
This method can rapidly generate preliminary forecasts using accessible data with low fieldwork commitment for small communities that rely on unassessed water supplies. Thus, short-term risk can be identified to direct planning, adaptation, and infrastructure responses to changing climate and demand.

TITLE

Vulnerability of Freshwater Supply in Arctic Canada

PRESENTERS

Andrew S. Medeiros\(^1\), Michael Bakaic\(^2\), and Jessica F. Peters\(^3\)

\(^1\) Department of Geography, York University, Toronto, ON, M3J 1P3, Canada

\(^2\) Department of Environmental Studies, York University, Toronto, ON, M3J 1P3, Canada

\(^3\) Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada

INTRODUCTION

Water is a fundamental component of the ecological integrity, economic development, and sustainability of northern regions, as well as being critical for the health and well-being of northerners. However, environmental change has altered fragile thermodynamic relationships of northern ecosystems by shifting seasonal transitions, altering precipitation regimes, reducing long-term snow cover, and increasing the high sun season. Snow melt is a crucial source of water for many shallow subarctic lakes, but snowfall is projected to decrease in some regions, with profound ecological consequences. Here, we assess the relative importance of hydrological processes on the sustainability of lakes and rivers as municipal water sources in Arctic Canada using water isotope tracers and hydrologic modeling.

METHODS

An isotope mass balance model was used to calculate input water isotope compositions and evaporation-to-inflow (E/I) ratios to distinguish the relative roles of snowmelt, rainfall, and evaporation on lake and river water balances. We then utilized Hydrological Modeling Software (HMS-HEC) to examine the influence of climate on municipal supply.

RESULTS

Results show that both lakes and rivers were strongly influenced by rainfall throughout the open-water season. Supply lakes were found to have little
evaporative enrichment. We also note a systematic, positive offset measured between lake water $\delta^{18}O$ and $\delta^{18}O$ inferred from cellulose in recently deposited surface sediments from multiple northern regions. Forecasts of municipal water supply indicate a pronounced vulnerability to reduced winter precipitation and/or increased ice thickness of reservoirs on the municipal supply.

CONCLUSIONS

Our findings indicate a lower-than-average snowmelt runoff in recent years, which is forecast to significantly affect municipal supply. Notably, some lakes were observed to undergo near-complete desiccation following a winter of very low snowfall. These findings fuel concerns that a decrease in snowmelt runoff will lead to widespread desiccation of shallow lakes, including the primary municipal supply of many northern communities in Canada.

TITLE

Climate Change and Community Water Security: Emerging Challenges and Strategies

PRESENTER

Mike Brubaker, Director Community Environment and Health, Alaska Native Tribal Health Consortium

CONCLUSIONS

Climate change is having a wide range of impacts on community health, including on the water resources and infrastructure. From source waters to point of use, the tribal health system is awakening to new challenges and responding by developing adaptive strategies that are effective and appropriate.

In 2008, responding to the growing concerns about climate change, ANTHC’s Board of Directors established the Center for Climate and Health, for the purpose of describing the connections between climate change, environmental impacts and health effects. Community listening sessions and assessments have been performed across Alaska, providing an in-depth analysis of local impacts and concerns. Water security has been an important focus and priority.

The condition of drinking source waters (lakes, reservoirs, rivers, and groundwater) have never been so dynamic, with communities facing unprecedented challenges with the water season, supply and quality. The infrastructure that delivers water to homes and businesses is also impacted, in some cases with widespread damage and service interruption. ANTHC has developed a variety of strategies to help communities address climate change impacts. The approach can be divided into three categories: 1) building capacity, 2) raising awareness, and 3) engineering for...
In this presentation, selected findings from community assessments are described, including specific examples of environmental drivers (erosion permafrost thaw, snow season change, drought) and examples of strategies that are increasing water security by building capacity, raising awareness and by engineering for greater resilience.

TITLE
International Survey on Water and Sanitation in the Arctic

PRESENTERS
Jonathan M. Bressler, Thomas W. Hennessy

INTRODUCTION
The 2015 United Nations Goals for Sustainable Development include providing access to safe and affordable drinking water, and adequate sanitation and hygiene for all by 2030. In the Arctic, inadequate water and sanitation services are associated with poorer health status, and mostly affect rural and indigenous populations. For Arctic nations, providing and maintaining water and sanitation services presents unique challenges including emerging threats related to climate change. As an endorsed project of the Arctic Council’s Sustainable Development Work Group, we seek to describe the current state of water and sanitation services, water-related disease monitoring, and the environmental changes affecting water and sanitation in northern circumpolar populations.

METHODS
We surveyed professionals in Arctic health, water, and sanitation; government officials responsible for health, environment or water sanitation; and interested residents in Arctic and sub-Arctic communities through an online survey. The survey collected information on access to water and sanitation facilities, reportable water-related diseases, and the impact of climate change on water and sanitation.

RESULTS
The survey is ongoing. As of June 30, 2016, 130 responses from seven countries have been received. Detailed information was provided by four respondents from Canada, six from Finland, five from Greenland, one from Iceland, one from Norway, three from Sweden, and 32 from the United States. Reported access to water and sanitation varied from 75 to 100 percent of the population, though other sources indicate that this percentage is much lower in some communities. Reportable
diseases and data sources vary by country, and respondents reported that climate change affects water and sanitation access in six arctic nations.

CONCLUSIONS

Initial survey responses indicate that inadequate access to water and sanitation exists throughout the Arctic, related health measures are commonly recorded, and climate change is affecting water and sanitation service in many communities.

INNOVATIVE ENGINEERING APPROACHES TO INCREASE ACCESS TO WATER OF ADEQUATE QUALITY & QUANTITY, INCLUDING WATER REUSE

TITLE
Charting a New Direction for Wastewater Treatment in Nunavut

PRESENTER
Ken Johnson

CONCLUSIONS

The so-called “leaky lagoon” was a generally accepted design concept for many years in the Nunavut Territory, formerly the Northwest Territories. However, because of the application of more stringent effluent quality standards and the requirement of a controlled effluent discharge, this design concept is now unacceptable. The current design concept applied for lagoon systems in the Far North is a retention lagoon with a seasonal discharge. In addition, use of wetlands has emerged as a supplementary process for lagoon systems.

The construction of retention lagoons applies modern geomembranes in many cases because of the absence of fine soil materials for the construction of structures with low permeability. New issues are emerging with the construction of these relatively complex earth structures because of the extreme cold climate, permafrost earth regime, and construction techniques.

The anticipated costs of remedial work to address these issues are about half of the capital costs of the original multimillion dollar structures, which are beyond the available capital funding. A much-needed new direction is being charted based on research to develop northern science for wastewater treatment. This science is being communicated to regulators and communities, to incorporate social science, and engineering and applied science. With this activity, it is anticipated that a new, more appropriate direction for wastewater treatment may emerge for Nunavut.
Natural Engineering Wastewater Treatment (NEWT™) for Alaska Villages

Thomas Kasun

INTRODUCTION

NEWT™ is an innovative wastewater treatment system that cleans wastewater while meeting stringent permitting requirements, even in the most challenging environmental conditions. It also provides high quality water treatment at a lower total cost. By engineering and enhancing the familiar biological, chemical, and physical processes from conventional wastewater treatment, NEWT™ provides a wetland-based technology that serves as a cleaner and greener solution.

METHODS

The NEWT™ system’s three steps include: (1) anaerobic treatment tanks which break down and separate organic material in the water; (2) passive engineered wetlands that use vegetation and oxygenation for further treatment of organics and removal of nitrogen and metals; and, (3) a UV system to disinfect the water. The combination of these stages enables a dramatic reduction in sludge disposal over the system lifetime. The result is water treated to the same or better quality as that of a conventional system.

RESULTS

Alcoa has used the NEWT™ system in two different climates: one at the Alcoa Technical Center near Pittsburgh, PA, and the second in Saudi Arabia. Both systems have delivered superior water quality across six and two years of operations, respectively. In Pittsburgh, the NEWT™ system cleans the water sufficiently enough to meet a discharge permit, while in Saudi Arabia 90 percent of the water is reused as industrial process water and 10 percent is used for irrigation, which must meet Royal Commission Standards. The treated water from these processes is water quality, sufficient to consider reuse.

Both processes have been through some notable extremes while in operation. For example, in 2015, the Pittsburgh NEWT™ system was subjected to ambient temperatures of -30 F in the first quarter of 2015 and 13 inches of rain in June 2015. The effluent quality of the water stayed within the permit levels in both of these extreme conditions. With a similar design, the system in Saudi Arabia has produced superior water quality, where temperatures can reach 110 F.

CONCLUSIONS
Extra benefits of the NEWT™ system include a significant reduction in operating and maintenance costs because of its simplicity, and there are virtually no mechanical operations that need monitoring. The capability for water reuse increases access to scarce water resources. All of this makes NEWT™ an ideal solution for remote areas of the world, including the Arctic.

TITLE

Design, Construction, Operation, and Demonstration of a Municipal Net-Zero Water System for Nearly Closed-Loop Reuse of Water and Energy

PRESENTERS

James D. Englehardt, Ph.D., P.E.
Tingting Wu, Ph.D.
Lucien Gassie
Tianjiao Guo, Ph.D.

INTRODUCTION

Net-zero water (NZW), or nearly closed-loop direct potable water reuse systems, can recycle both water and thermal wastewater energy. However, design and operating experience are limited. The objective of this paper is to present results of a project to develop an advanced oxidation-based NZW system.

METHODS

A mineralizing urban NZW system was designed for energy-positive, 100 percent recycling of comingled black and grey water to drinking water standards, and mineralization of emerging organics, constructed and operated for two years to serve a four-bedroom, four-bath university residence hall apartment. The system comprises a septic tank, denitrifying membrane bioreactor (MBR), aerated aluminum electrocoagulation/flocculation, vacuum ultrafilter, and peroxone or UV/H₂O₂ advanced oxidation, with 14 percent rainwater make-up and concomitant discharge of 14 percent of treated water (ultimately for reuse in irrigation).

RESULTS

The process produced a mineral water meeting 115 of 115 Florida drinking water standards with total dissolved solids of ~ 500 mg/L, pH 7.8, turbidity 0.12 NTU, and NO₃-N concentration 3.0 mg/L. Chemical oxygen demand was reduced to below the detection limit (<0.7 mg/L). None of 97 hormones, personal care products, and pharmaceuticals analyzed were detected in the product water. Neither virus nor protozoa were detected in the treated water. All but six of 1,006 emerging organic constituents analyzed were either undetected or removed >90 percent in treatment.
CONCLUSIONS
An urban net-zero water system has been demonstrated capable of recycling 85 percent of municipal water. No concentrate is produced, and sludge pumping was projected on a 12- to 24-month cycle. A distributed, peroxone-based NZW system is projected to save more energy than is consumed in treatment, due largely to retention of wastewater thermal energy. Costs in urban and suburban areas are projected to be competitive with current water and wastewater service costs at scales above ca. one plant per 100 - 10,000 residences.

TITLE
Preliminary Test Results from an Electrically-Assisted, Anaerobic Sewage Treatment System

PRESENTERS
Bob Tsigonis, Primary Author and Presenter
Yehuda Kleiner and Boris Tartakovsky, Co-authors

INTRODUCTION
The correlation between health and affordable access to running water and sewer services in Alaska has been well documented, and a similar correlation exists for communities in northern Canada. Engineers, public health officials, and social scientists are working on both sides of the border looking for solutions.

METHODS
National Research Council Canada (NRCC) has been developing and testing an innovative, anaerobic sewage treatment technology that they think could be well-suited for northern homes and communities. This technology uses low voltage electricity to enhance microbial performance, and if a simple method can be found to harness the energy from low volumes of methane, it may be net energy positive.

When NRCC contacted Lifewater Engineering Company (Lifewater) in the latter part of 2015, both organizations immediately recognized the synergy of working together to advance this technology from the lab to the field, so a collaborative working agreement was established whereby each organization could provide expertise, equipment, and manpower to jointly accomplish in a short time what would otherwise take many years.

RESULTS
A pilot test system was designed jointly by NRCC and Lifewater, was fabricated by
Lifewater, and is being tested by Lifewater in their shop in Fairbanks, with input and oversight from NRCC in Ottawa. A summary of preliminary pilot test results will be presented.

CONCLUSIONS

The potential for use of this sewage treatment technology in northern homes and communities will be discussed. Possible deployment scenarios in Alaska, Canada, and around the world may also be presented.

TITLE

The Kivalina Biochar Reactor: The Arctic’s First Human Waste Bioreactor

PRESENTERS

Re-Locate LLC (either Michael Gerace or Jennifer Marlow) and Jeff Hallowell, President, Biomass Controls, LLC, Co-authors

INTRODUCTION

Working with Kivalina City and Tribal Councils and families, Re-Locate is partnering with Biomass Controls, LLC, to design and build a winterized human waste biochar reactor to improve sanitation with relocatable technologies in Kivalina, Alaska. The Kivalina Biochar Reactor is built to run successfully in Kivalina’s Arctic environment, and to coexist within existing social and economic roles and responsibilities for managing waste.

METHODS

Re-Locate conducted ethnographic research into current waste management practices in Kivalina. We mapped waste collection, circulation, and disposal with honeybucket collectors in Kivalina; and installed a waterless toilet as a dewatering front-end strategy for making biochar reactor technology more compatible with freezing Arctic temperatures on the whole. Biomass Controls built a prototype reactor, validated cold-weather operability, and is keeping daily records of data on: moisture content of feedstock that mimics expected Kivalina waste volumes and inputs, heat exchange in the unit’s catalytic converter, stack temperatures, emissions, and quality and contents of output biochar.

RESULTS

We tested the prototype reactor by processing solid waste, wipes, plastic bags, toilet paper, and cardboard—waste streams that mimic the kinds of inputs we expect the Kivalina reactor will handle. A solid waste mix tested at around 55 percent moisture pyrolyzed waste at 1,300 degrees F and produced verifiable biochar.
CONCLUSIONS

Human waste biochar reactors are a relocatable sanitation solution for Kivalina and other villages without adequate water and sanitation. The applicability of biochar reactor technology to as an Arctic sanitation solution compels further testing and innovation of alternative waterless/dewatering toilet technology to replace the honey bucket system, and other relocatable alternatives to centralized piped infrastructure.

TITLE

Potentials and Challenges of Biogas from Fish Industry Waste in the Arctic

AUTHORS

Pernille Erland Jensen*, Arctic Technology Centre, Department of Civil Engineering, Technical University of Denmark. DK-2800 Lyngby, Denmark
Stefan Heiske, Department of Chemical Engineering, Technical University of Denmark. DK-2800 Lyngby, Denmark

INTRODUCTION

The fish industry is a main industry in many Arctic locations. In most places with local fish and seafood processing facilities, by-products are disposed of at sea. Oxygen depletion and dead sea bottom is observed, and by the anaerobic conditions developed at the seabed, the organic material is biodegraded and methane produced, contributing to the global warming. The objective of this study was to determine the biogas potential of fish industry by-products from Greenland. The biogas potential arises from the same organic fraction causing the methane production at the seabed, and takes advantage of the same microbiological processes, however under controlled conditions and with collection of the biogas for energy utilization.

METHODS

Methane potential of Greenlandic shrimp, crab, and halibut by-products, as well as co-digestion of shrimp by-products with waste water sludge and common brown algae, was tested in lab scale batch experiments at mesophilic conditions. Fate of indicator microorganisms was investigated.

RESULTS

All residues had biogas potentials similar to, or higher than, conventional
feedstocks like manure and silage. Waste water sludge and brown algae had potentials comparable to manure. The combined shrimp and algae digestion showed indication of synergistic effects. Indicator bacteria were reduced significantly while coliphages (virus indicators) were not.

CONCLUSIONS

Fish and seafood by-products from the fish processing industry constitute a significant resource for energy and may provide an economic incentive to install digesters, which can also partly stabilize waste water sludge, though additional heat treatment may be necessary depending on final use of digestate.

REGULATIONS AND POLICIES AFFECTING ACCESS TO, AND THE COST OF, PROVIDING ADEQUATE QUANTITIES OF WATER IN THE HOME

TITLE

EPA Regulations, Policies, and Guidelines for Water Reuse: Implications for Decentralized Greywater Reuse

PRESENTER

Robert K. Bastian, Senior Environmental Scientist
Office of Wastewater Management
U.S. Environmental Protection Agency
Washington, D.C. 20460

INTRODUCTION

How do current EPA regulations, policies and recommendations from the agency address decentralized greywater reuse? Do other standards and sources of guidance address decentralized greywater reuse?

METHODS

Provide background information on the EPA 2012 Guidelines for Water Reuse document and its coverage of decentralized greywater reuse, as well as other sources of standards and guidance, such as applicable NSF/ANSI standards, examples of state standards, WateReuse Association/WEF/AWWA White Paper on Graywater, and the NRC/NAS report.

RESULTS

We do not have any EPA regulations focused on water reuse in general, or specific
to decentralized greywater reuse. However, among many other things, the 2012 EPA Guidelines for Water Reuse document provides recommended minimum requirements for a series of water reuse practices that may be helpful. And there are other sources of standards and guidance that may also be helpful.

CONCLUSIONS

Indoor uses of greywater will likely need to comply with standards similar to those imposed on indoor use of reclaimed water.

TITLE

Greenland – Far from Reaching the United Nations Millennium Development Goal - Why?

PRESENTER

Kåre Hendriksen, Associate Professor, Ph.D., Arctic Technology Centre, Technical University of Denmark

CONCLUSIONS

Too few households in Greenland have piped water, just as a good part of the population must leave their black wastewater in plastic containers, often referred to as “honeybuckets.” Consequently, Greenland is far from meeting The United Nations Millennium Development Goal. There are social and geographical inequalities. Typically, it is the socially disadvantaged families who do not have running water. Sanitation is a virtually unknown phenomenon in the smaller settlements.

The lack of access to piped water and sewer reflects some key issues: It may be technically challenging to ensure adequate water supply at a number of Greenlandic settlements. Large parts of the High Arctic Greenland are desert, and many settlements are located on small islands without large water reserves. Because of climatic and geophysical conditions, sewage systems are costly to establish and operate, and it requires adequate water supply.

There are political and institutional challenges, too. Water and sanitation in small settlements does not seem to be a priority, compared to investments in other forms of infrastructure and social facilities in major cities.

For Greenland settlements, infrastructure such as electricity, water, and sewage are based on island operation. Over the latest decades, the former nationwide technical organization, which was responsible for the establishment and operation of infrastructure, has been divided into sectors in a number of independent companies, with no financial incentive for cooperation. This means that coordinated rationalization gains are not exploited, whereby infrastructure cost—
especially in smaller settlements—will increase significantly.

The factual distribution of household tap water and sewer connections across settlement types will be presented, and the social aspects will be explained. Discussion will center around why Greenland does not make meeting The United Nations Millennium Development Goal a bigger priority—one that could be well within reach—and what can be done to achieve this goal.

TITLE

Beyond Education: Using Social Change Marketing to Effect New Behaviors

PRESENTER

Kathryn J. Anderson, Ph.D., MPH

INTRODUCTION

Knowledge is not always sufficient to motivate people to change. While educational campaigns have been effective for relatively simple behavior changes, many problems we are tackling today are far more complex and, quite simply, people do not always practice what they know is best. Humans have free will, competing interests, live in particular social contexts that may be different from ours, and have unique psychological makeups.

Social change marketing is a well-established discipline that has been used successfully worldwide to affect behavior change in these more complex situations. It has been used to change behaviors in arenas such as conserving water and energy conservation, using pesticides, breastfeeding, and practicing safe sex.

Social change marketing is built on principles from diverse fields such as commercial marketing, psychology, and behavioral economics. It is behavior-change centric, theory informed, and research directed. Social marketers emphasize the need for the careful segmentation of audiences, and they strive to deeply understand the barriers to change and the potential benefits of change, specifically from the target audience perspective. Social marketing programs, or interventions, are built upon these principles and insights, and they are crafted to make behavior change easier, less objectionable, and more related to the target audience’s own perception of value.

CONCLUSIONS

This talk will discuss the principles of social change marketing, describe some
interesting successful programs, and lay out some ways that this discipline might be appropriate for influencing behavior changes relative to rural sanitation initiatives.

TITLE

Proposed Reforms to Alaska Water & Sewer Improvement Efforts

PRESENTER

Megan Alvanna-Stimpfle

CONCLUSIONS

Addressing the issues of housing, and sewer and water in our communities, remains Kawerak’s top priority. While funds are needed for first-time service, operations and maintenance funds are needed for infrastructure improvements. Five villages within the Bering Straits Region remain unconnected to running water and sewer: Diomede, Wales, Shishmaref, Stebbins and Teller. In three other communities, 30-50 percent of the homes in the community still need to be connected: Golovin, Gambell and St. Michael. Ongoing sewer and water upgrades and maintenance remain concerns in the remaining seven communities of Elim, Koyuk, Savoonga, Shaktoolik, Unalakleet, White Mountain and Brevig Mission.

Multiple Federal Programs

There is an average of $68.2 million annually funded by a combination of six federal funding streams and the State of Alaska. Designated sewer and water funding includes:

- United States Department of Agriculture Rural Development Capital Improvement Program
- Environmental Protection Agency (EPA) Infrastructure Grant Capital Improvement Program
- Indian Health Service Sanitation Program
- Environmental Protection Agency Safe Drinking Water Act
- Environmental Protection Agency Clean Water Act Indian Set Aside
- Indian Health Service Housing Priority System

There are three main allocation systems for these funds that ultimately end up being managed or administered by either the Alaska Native Tribal Health Consortium (ANTHC) or the State of Alaska Village Safe Water Program, which may or may not duplicate government services. Roughly $33 million is allocated by the capital improvements program in the form of grants, accounting for 44 percent of funds going into sewer and water investments. The Indian Health Service (HIS)
Sanitation Deficiency System represents 30 percent of total funding, reflecting an investment of $22.5 million annually.

Complex Regulatory Structure

As highlighted by the ANTHC, federal funding streams must be coordinated to complete construction of a community system. For example, EPA Safe Drinking Water Act funding can only be used for community water facilities and water service lines, but no funding can be used for hooking up homes, or for interior plumbing. IHS housing dollars can be used for water and sewer facilities on “like new” Alaska Native-owned homes, but cannot be used for interior plumbing. IHS sanitation funding can be used for interior plumbing and Alaska Native-owned homes. An EPA Infrastructure Grant can be used for planning, water and sewer facilities, and indoor plumbing, however it cannot be used for plumbing or service lines to HUD homes constructed after 2000. This regulatory structure provides for complicated planning and delays as funding must be pieced together to complete a community.

Reform Principles

• Greater involvement and coordination by communities and regional institutions, including accuracy and consistency of data
• Leveraging federal investment with private sector investment
• One regulatory structure supporting community development/investment plans

It is important to acknowledge that some communities in Alaska have strong local leadership, while others rely on the expertise of the state or ANTHC to administer development projects. It will be important for decision makers to discuss transferring the responsibility or portions of it to communities or regional institutions, allowing for knowledge to empower communities as they try and determine how to manage or coordinate funding the investment of sewer and water. Knowing where communities and regions lie on the statewide IHS sanitation deficiency system, and the timeline for construction and investment, empowers leaders with how to coordinate or solicit private sector funds.

Currently, it is the responsibility of engineers managed by ANTHC or the state to input data into the IHS Sanitation Deficiency system. It is important that communities and regional tribal organizations take an active role in the input of data, ultimately determining their position within the IHS Sanitation Deficiency System. Ensuring the accuracy and consistency of data for communities across Alaska is imperative for a just system.

Many communities use private donations (by CDQ groups for example) to manage sewer and water, and utility systems. Active, real-time updates to the IHS sanitation deficiency system are a possibility to improve the current management of the list, not only to reflect priority local investments in the region, but also to examine greater leveraging and coordination of private, state and federal funds.
Once a development plan for a community is formed and verified by an administering agency, any source of federal funding could be used to complete the project. Such a system would require federal agencies to waive the regulatory structure in support of a community development plan, or to adopt a common regulatory structure. Should timelines and federal funding sources be identified, communities, regional institutions, the statewide tribal health organization, or the State of Alaska could enter into contracts with the private sector to construct systems with federal and state programs, making payments over time, as established by the IHS Joint Venture Program or the tribal transportation options.

METHODS OF OWNERSHIP, OPERATIONS & MAINTENANCE TO MAXIMIZE USEFUL LIFE OF WATER & SEWER SYSTEMS IN THE ARCTIC

TITLE
Techniques and Design of Building to Make It More Compatible With This New Arctic Environment

PRESENTER
Michael Black

INTRODUCTION
Much of rural Alaska is experiencing a changing environment related to a warming Arctic. Much of these changes are reflected in the warmer seasons and the amounts and form of precipitation. There are increasingly obvious changes in the natural environment. With those changes, there are also changes in the built environment. Roads are unstable, building foundations are compromised, barge landings and fuel delivery points are lost to both erosion and sedimentation, lack of sea ice allows fall flooding and storm surge to threaten coastal infrastructure, and snow loads are increasingly stressing roof structures. Water and sewer is experiencing its share of threats from the changing environment. Traditional engineering of water and sewer systems will be challenged by these changing conditions.

METHODS
The Alaska Rural Utility Consortium (ARUC) is a group of 29 communities from around Alaska that have entrusted the Alaska Native Tribal Health Consortium (ANTHC) to operate and maintain their water and sewer utilities. This consortia of Arctic and sub-Arctic systems is a natural laboratory for the ANTHC Division of Environmental Health and Engineering to discover the problems that are emerging for sanitation systems in a warming environment. Through innovative engineering
and operating methodologies, ANTHC has had to address changing Arctic conditions to keep these systems working and affordable for the customers.

The lessons learned by ARUC should be shared. That is the purpose of my presentation. I will examine the changing conditions that are challenging traditional water and wastewater engineering and share some of the ways we have adapted traditional approaches.

RESULTS

We are losing some of our source water as tundra ponds disappear. We are having to reach out for source water to more reliable sources such as groundwater and rivers.

Rivers, however, are increasingly laden with sediment and their chemistry is changing. We have had to further filter water from rivers as thermokarst has dumped large amounts of sediment into the water column.

Southeast Alaska and Kodiak Island are experiencing less precipitation and the source waters are being lost for some communities. We have found the need for more impoundments. Permafrost is melting, which means our pipes require different pilings and can no longer rely on cribbed foundations. We have also seen pipes sagging and differential settling with buildings that require a flexible connection to allow for movement of the pipe in relation to buildings they serve.

Lack of sea ice allows for a longer flooding and storm surge season that requires us to protect pipes by elevating the pilings or armoring the vulnerable areas. Melting permafrost also threatens water treatment plant foundations. We are currently designing a retrofit of the traditional passive thermosyphon to convert to an active refrigeration of the foundation using solar powered chillers.

CONCLUSIONS

The engineering community must modify the techniques and design of buildings to make it more compatible with this new Arctic environment, or we stand to lose all the hard-fought gains in public health infrastructure that have significantly extended life quality and expectancy.

TITLE
Applying a Water Safety Plan (WSP) Approach to Small Systems in Northern Canada

PRESENTERS
Graham Gagnon, Amina Stoddart, Kaycie Lane
Centre for Water Resources Studies, Dalhousie University Halifax, Nova Scotia

CONCLUSIONS
The typical model for potable water delivery by the Government of Nunavut (GN) in Canada is to extract water from surface waters and pipe or truck it to reservoirs within the community. From there, it is trucked to public buildings and households and stored in small on-site tanks. Depending on the community, chlorination for microbial control is performed either upon discharge from the reservoir, or directly within the water delivery truck. Communities in Nunavut face unique potable water treatment and delivery challenges associated with climate and remoteness, including a lack of operator training; lag time between sample collection, analysis and reporting; and aging infrastructure.

To address the unique challenges associated with potable water treatment and delivery in these communities, we are developing a water safety plan (WSP). WSPs are a preventative risk assessment and management tool, recommended by the World Health Organization (WHO), that critically analyze a water treatment system from source water to consumption to identify water quality hazards and associated risks to human health. Although use of WSPs has been advocated by the WHO since 2001, WSPs are not ubiquitous across Canada. However, other Arctic jurisdictions, such as Iceland, have successfully used WSPs as a regulatory tool to help ensure safe drinking water.

The objective of this paper is to describe a WSP framework that has been uniquely tailored to identify risks to drinking water safety, from the source to the tap, for GN communities. The proposed framework relies on a series of survey questions that, when answered, can be used to systematically determine the likelihood and consequence of predetermined hazards to provide a semi-quantitative assessment of risk. When a threshold risk is identified, the hazard is revealed and preventative measures for the hazard are suggested. The proposed WSP will require pilot application to understand adoption, but is a first step in preventative drinking water regulations from a risk management perspective.
A New Affordability Indicator for Rural Alaska Water Utilities

PRESENTERS

Barbara Johnson, Joseph M. Little, Co-presenters

INTRODUCTION

This research presents an alternative to the current affordability indicator used by Village Safe Water, a program of the Alaska Department of Environmental Conservation (DEC). Both indicators are used and compared to assess whether rural Alaska communities can financially sustain water utilities over the lifetime of the infrastructure. Currently, the DEC considers a water utility to be affordable if annual operations and repair costs do not exceed five percent of the community’s median household income (MHI). Because many rural Alaska community economies are a mixture of subsistence and cash activities, the MHI indicator often fails to accurately assess affordability.

METHODS

After a literature review, the EPA affordability matrix for sewage utility was picked as a template. The matrix was adapted to the Alaska context and the new indicator applied to past and future projects.

RESULTS

The new indicator combines a residential indicator (RI) and a financial capability index (FCI). RI is based on the percentage for each income quintile of the annual utility cost. FCI is composed of socioeconomic indicators. The new indicator was retroactively applied to a project and found to more accurately assess affordability. The new affordability indicator assesses utilities as unaffordable more often than the MHI indicator.

CONCLUSIONS

A community’s socioeconomic situation impacts the affordability of water utilities. Given this, it is recommended that affordability assessments include socioeconomic indicators. Furthermore, using income quintiles rather than MHI is encouraged as the quintiles provide a more detailed picture of the impact of user fees on the population.
Affordable Sustainable Sanitation Through Energy Efficiency

PRESENTER

Gavin Dixon, Alaska Native Tribal Health Consortium (ANTHC), Rural Energy Initiative

INTRODUCTION

Providing basic sanitation service of any type in rural and Arctic Alaska is very expensive. This is partially due to the extensive use of high-cost fuel and electricity in operating water and sewer systems in these harsh climates. On average, energy costs make up 40 percent of the total cost of providing services. The ANTHC Rural Energy Initiative has worked for six years to identify and implement opportunities to reduce energy consumption and decrease the cost of providing water and sewer service, thereby expanding access to basic sanitation through affordability of service, as well as through sustainability of sanitation infrastructure.

METHODS

Our team set out to identify the best opportunities to reduce energy costs through a series of sanitation facility energy audits. Once completed, ANTHC worked with funding agencies and communities to identify funding to implement relatively low-cost energy efficiency measures in a variety of community sanitation systems across Alaska. Based upon the findings of the audits, it was determined that a team that could provide minor plumbing and electrical improvements and focus on providing operator training would be best.

RESULTS

More than 35 communities have received energy efficiency improvements and training in their sanitation systems over the last two years. These systems have benefitted from reduced costs of providing services through reduced energy usage, with an estimated annual energy savings of $500,000 annually. Additional benefits of the program include improved functionality and reliability of delivering services, increased operator confidence, improved comfort, and expanded lifespan of struggling facilities.

CONCLUSIONS

Energy efficiency improvements solve a variety of problems for water and sewer systems in rural Alaska. ANTHC’s low cost sanitation energy efficiency training and retrofit program has reduced costs, improved reliability, expanded the useful life of aging infrastructure, and improved operator confidence and effectiveness.
Introduction

Access to clean water is vital to good health. In rural Alaska, residents in villages with higher service rates—where more than 80 percent of residents have clean water and sanitation access in the home—have shown a significant decrease in hospitalization due to pneumonia, diarrhea, respiratory diseases, and skin infections. Unfortunately, Alaska ranks last amongst U.S. states in percentage of the population with access to water and sanitation facilities (93.7 percent as of 2000). Many of the existing water systems are at risk of failure due to the multitude of challenges inherent in operating, maintaining, and managing them in harsh Arctic environments.

Methods

In an effort to improve the sustainability of these systems, the “Water is Life” project was started. This health promotion campaign targets three specific groups at different levels of the social ecological model of public health: 1) water consumers, 2) water treatment plant operators, and, 3) utility managers and tribal governments. The project unites these groups to create a shared vision and raise public awareness of their water and sanitation system through the creation of a large-scale mural. The mural serves as a catalyst to create teachable moments that encourage water infrastructure awareness and behavior change. The mural and educational activities connect the traditional water culture and values of the tribe to the modern sanitation infrastructure and healthy water use behaviors.

Results

“Water is Life” helps build community pride and ownership of the system, improving water system sustainability. Results from pilot projects demonstrate successful water system financial sustainability, as seen from a $50,000 deficit becoming a positive balance, city government involvement, and effective community engagement.

Conclusions

This presentation will discuss the vision, process, evaluation, and results of the “Water is Life” project conducted in Russian Mission and Deering in May and June 2016.
Peculiarities of Water Supply and Drinking Water Quality in the Russian Arctic

Note: This presentation is not available.

Alexey Dudarev
Head of Hygiene Department, Northwest Public Health Research Center
St Petersburg, Russia

Population of the “Arctic Zone” of the Russian Federation (Murmansk Oblast, Northern Karelia, Northern Arkhangelsk Oblast, Nenets Okrug, Yamal-Nenets Okrug, Taimyr, Northern Yakutia, Chukotka) is about 2.5 million, including 115,000 indigenous people. Half of the total Arctic population lives in the cities and the other half lives in small settlements (90 percent of habitation). Centralized water supply exists in most of the big towns, but not all of them are equipped with water pre-treatment facilities. In rural areas, most of the population uses drinking water from non-centralized sources. Continuous permafrost, which occupies most of the Russian Arctic Zone (excluding Murmansk Oblast), is the main cause of infrequent use of underground water sources. In small settlements, water pipes usually supply untreated and non-disinfected drinking water directly from surface water sources. A majority of these water supply systems in rural areas are used only in summer. During the winter months, most water for household needs and drinking is delivered from surrounding reservoirs. Some communities have “technical” pipeline water-delivery systems from the nearest lake or river, and use constant water preheating during cold seasons, which serves as a centralized combination of house heating and hot-water supply, to prevent the water from freezing. In severe cold climate zones, where wells are unavailable or impossible to construct, water is typically delivered by trucks carrying water tanks in summer and sawn ice blocks in the winter. Usually the drinking water quality is low due to weak protection of aquifers from pollution, lack of sanitary protection zones, serious deterioration of water distribution and sewerage networks, and the numerous accidents on these networks that leads to secondary pollution of drinking water. Drinking water in the Russian Arctic, as a rule, does not meet hygienic standards for chemical substances and biologic agents.
CONCLUSIONS

The University of Alaska Anchorage (UAA) team has developed a prototype treatment system utilizing membranes and high dose ultraviolet light (UV) to demonstrate on-site water reuse as an alternative to a conventional community water and sewer system. Further, in-home plumbing concepts evaluated include isolated systems for each fixture that operates on 12-volt direct current electrical power and are pneumatically driven with low-pressure air.

At the time of the conference, the team is testing treatment system configuration No. 4 since the Phase II proposal. The current configuration recycles used water originating from the kitchen sink, bathroom sink, shower and clothes washer. Recycling is performed by initially concentrating this greywater using nanofiltration (NF), where NF reject is recycled to the greywater tank and the NF membrane permeate product is disinfected by ultraviolet (UV) and sent to an intermediate tank. From this intermediate tank, the water is fed to a reverse osmosis (RO) membrane filtration step, where RO reject is recycled to the intermediate tank and RO membrane permeate product is disinfected by UV and sent to the wash water tank where it is pumped into the home for non-potable, full-body contact reuse.

The Wostman EcoFlush diverting toilet, used in this prototype, flushes into a 15.5-gallon tank intended for sealed small system haul. In the case of a non-functional community haul system, the tank is small enough for personal haul.

Treatment system configurations operated prior to this conference produced wash water with turbidity <1 NTU, no observable color and ultraviolet transmittance of greater than 95 percent. Ongoing modifications are aimed at reducing the concentration of organic matter in the wash water believed to originate from urea in urine and soap. To date, the system reuses each gallon of water hauled into the system at least five times prior to disposal.
The Alaska Department of Environmental Conservation (ADEC) has initiated the Alaska Water and Sewer Challenge (AWSC), an applied research project to create innovative and cost-effective home-based water and wastewater system (HWWS) solutions for households in remote Alaska villages. The DOWL Team is one of three engineering teams selected by ADEC for Phase 3 of this project which covers design, construction, monitoring, testing and optimization of a prototype HWWS. Our prototype system includes greywater and blackwater (waste) storage tanks in a small “bump out” (vestibule) attached to the house, treatment and recycling of greywater for cleaning and washing in the home, and a separate point-of-use (POU) filter for drinking water. The greywater treatment system includes a two-stage granular activated carbon (GAC) filter for turbidity and dissolved organics reduction, and a two-lamp self-cleaning ultraviolet system for disinfection. The POU filter includes replaceable ceramic filter elements and is designed to treat and store melted ice water in the winter and rainwater in the spring and summer. A low-volume flush toilet (< 0.5 gallons per flush) can be used to reduce wastewater volumes to the blackwater tank and the frequency of wastewater hauling. The HWWS is designed to supply 40 to 80 gallons per household per day assuming an average household size of four people. The capital cost of the system, including shipping and household plumbing improvements, is about $53,000, and the monthly operating cost based on unit prices for power, water and liquid waste hauling in the village of Shishmaref is $141.

This presentation will highlight the key design features of the HWWS and how we co-designed the system with end-users in three villages we visited during the project—Shishmaref, Kwigilingok and Tununak—to meet their specific needs. We will also present the test plan and preliminary results of prototype testing of the HWWS at the Cold Climate Housing Research Center in Fairbanks, Alaska.
CONCLUSIONS

Summit’s proposed system for the Alaska Water Sewer Challenge is intended to be flexible and modifiable to meet the needs and capabilities of the individual homeowner, and to be installed and maintained with a local labor force. Summit is working with Agnew::Beck Consulting, Re-Locate and the communities of Kongiganak and Kivalina on the system design and increasing end user acceptance.

Summit is testing the prototype system in a building designed like a typical home in rural Alaska and in environmental conditions similar to what would be expected in more remote villages. We are utilizing standard village home construction techniques such as the plumbing wall and raised platforms to install tankage and system components. Our goal is to reduce the amount of water and waste water hauled by reusing wash water. The 50-gallon raw water storage tanks would need to be filled every three days and waste water would need to be pumped from the home every three days. Fifty-seven gallons are treated and cycled through the system for wash purposes.

Raw water is added to the system from rainwater off the building roof and three surface water sources. Raw water is treated to drinking water standards by multi-stage cartridges, an ultrafiltration membrane and media disinfection. It is also added as make-up to the wash water system as needed. Wash water will be reused from the bathroom sink, laundry and shower. This wash water is treated via an aeration and biological process, and disinfected by ultraviolet or advanced oxidation. The cleaned and treated wash water is then available at the bathroom sink, laundry and shower, as well as at the kitchen and utility sinks, and for flushing the toilet. The system is being tested with two toilet configurations, a low-flush toilet and a urine-diverting dry toilet.
INTRODUCTION

Residents of Kivalina, Alaska, are faced with dire sanitation needs, but struggle to obtain funding assistance because of the community’s threatened status. Flooding and erosion have impacted critical sanitation infrastructure and make investment in new stationary infrastructure undesirable. Effective low-cost methods to address sanitation are needed for the interim, until the community relocates.

In 2015, the ANTHC led a team in designing and installing nine in-home water and sanitation systems as a pilot project. The systems incorporated low-water use fixtures, separating toilets, rainwater catchment systems, and seepage pits. The systems were designed to address basic sanitation needs of the residents including safe potable water, hand washing with flowing water, and safe handling and disposal of sewage. Homeowner training and involvement in the project were incorporated as critical elements to the project’s success.

METHODS

An evaluation of the systems will be completed in August 2016. Outcomes include homeowner acceptance, mechanical functionality, amount of water used, and operational costs. Data is collected through questionnaires completed onsite with household representatives and documentation of activities.

RESULTS

Preliminary results demonstrate increased water usage, reduced exposure to sewage, and overall satisfaction. Key modifications carried out or planned in response to feedback include modifications to the greywater tank, refining the ventilation, exchanging the piping material for greater freeze protection, and improving the local support system.

CONCLUSIONS

The pilot project has been a success with improvements in quality of life and resident satisfaction. Installing any type of system in a home presents challenges when homeowners must maintain their own systems in remote locations and under extreme conditions. Operation and maintenance support will be a key element in the successful application of any type of community wide in-home sanitation technology.

This presentation will explain the project, lessons learned, and outcomes of the evaluation.
OVERVIEW OF HOUSEHOLD WATER & SEWER PILOT SYSTEMS IN DEVELOPMENT
System Highlights

In order for a household of four people to use 420 gallons of water weekly, a total of 49 gallons of water will need to be brought into the home weekly, 14 gallons of drinking water from the washeteria and 35 gallons from a water source of user’s choice (e.g. rain, ice, river, lake) to be used at the fixtures for washing.

Also, 44 gallons of wastewater will need to be removed from the home each week, 35 gallons of concentrated greywater created by the wash water treatment system and about 9 gallons of urine from the toilet.

System components for wash water treatment are located inside a shipping container attached to the house. The drinking water treatment is located under the kitchen counter.

The only source of water recommended for drinking and cooking purposes is washeteria water to ensure that this water meets drinking water standards. Drinking water is provided at the kitchen and bathroom sinks at a separate faucet.

Greywater from the kitchen sink, laundry, shower, and bathroom sink will be recycled and made available at the kitchen sink, laundry, shower and bathroom sink as wash water for uses other than drinking and cooking.

Hot water is made available in the system for showers, sinks and the clothes washer hook-up from small volume electric water heaters.

University of Alaska Anchorage is working with partner communities in the Yukon-Kuskokwim and interior regions to gather feedback on the system from potential end users.

Questions, Comments or Looking for more information?
Website: www.ReuseWaterAK.com Facebook: www.facebook.com/ReuseWaterAK Email: addotson@alaska.edu Phone: 907.786.6041
Greywater Treatment System
- Air assisted soap removal
- Four stage filtration
 - strainer
 - ceramic microfilter
 - nanofilter membrane
 - reverse osmosis membrane
- UV disinfection
- Ozone tank disinfection

Research Prototype
Left – 10-ft shipping container greywater treatment system
Right – Fixture prototype shed

Fixture Prototype
- 12 volt Battery Operated/Backup
 - Air driven greywater plumbing
 - Individual fixture pumps
 - Smart Small Tank Water Heaters
 - High Efficiency Water/Dryer
 - Fixture associated strainers

Wash Water Quality
- Designed for greater than 99.99999% reduction of bacteria and viruses
 - confirmed with total coliform bacteria

Typical Wash Water Quality
- Turbidity - 0.1 NTU
- Organic Carbon – 0.5 mg-C/L
- pH between 6-8
- 0 MPN/100mL total coliform
- no odor
- soft water

Daily Water Availability

<table>
<thead>
<tr>
<th>Fixture</th>
<th>Operation</th>
<th>gallons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toilet</td>
<td>24 uses</td>
<td>0</td>
</tr>
<tr>
<td>Shower</td>
<td>22 min</td>
<td>22</td>
</tr>
<tr>
<td>Bathroom Sink</td>
<td>24, ½ min uses</td>
<td>14</td>
</tr>
<tr>
<td>Kitchen Sink</td>
<td>user choice</td>
<td>10</td>
</tr>
<tr>
<td>Laundry</td>
<td>1 load per day</td>
<td>12</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>0.5 gal/person/day</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>

Questions, Comments or Looking for more information?
Website: www.ReuseWaterAK.com Facebook: www.facebook.com/ReuseWaterAK Email: addotson@alaska.edu Phone: 907.786.6041
A stand-alone filtration system for drinking and cooking Water. This filtration system consists of a filter with special coatings to remove bacteria. It is also being tested to see if it removes viruses. The filter units are located in a 5-gallon bucket and the whole unit sits on a kitchen counter top. Untreated water from local sources can be loaded into the filter and treated for drinking. An additional bucket with holes can be placed in the top of the unit to hold melting ice. Information on this simple drinking water filtration system can be viewed on the internet: https://youtube/v5PKNtAoDHA

Drinking water is safe and the filter units are inexpensive and user friendly.
A separate system that treats and recycles wash water in the home. This allows for water to be used multiple times before it turns to wastewater as it goes through the toilet and kitchen sink. The wash water recycling system takes water from the bathroom faucet, the washing machine, and the shower and filters it through a two-stage carbon/zeolite filter, and then disinfects it twice using Ultra-violet (UV) lights. (A zeolite filter uses minerals as adsorbents.) Wash water that goes through the recycling system is safe, but not meant for drinking and cooking. Components within the proposed DOWL system are available commercially. A maintenance cooperative through a local government could stock replacement parts that would apply to all systems in a community.

Separate tanks for storing wash water and wastewater. Wastewater generated from the flush toilet, and the kitchen sink is transferred to a holding tank where it is held until it can be pumped away from the household by the local government. No water from the toilet or the kitchen sink enters the wash water recycling system. There is a separate storage tank for treated wash water. Treated wash water is stored in this tank until it distributed to the different fixtures.

A “vestibule” attached to the side of the house. The water recycling system and the tanks for storing water are housed in a “vestibule” that attaches to the side of the house. These components are placed in the vestibule so the tanks and recycling system do not take up space inside the home. The vestibule also allows heat from the house to drift into the vestibule, so a separate heating system is not required. The vestibule is super insulated and has a separate foundation system to allow the vestibule to allow for ground movement.

Low energy demand. Since the vestibule is super insulated it will not take much energy to heat it. A small energy demand will come from the pumps and disinfection system. The disinfection system, which is an ultraviolet light, has about the same energy demand as a normal light bulb. Holding tanks for wastewater are kept inside the warm vestibule, so no heat trace is needed.
Drinking Water
Drinking water is available at the kitchen and bathroom sink. Treated or fresh water must be hauled or collected every three to five days to refill the 50 gallon fresh water tank. Rain water can be directly piped into the system when available. Fresh or natural water passes through two pre-screening filters, two filters to remove bacteria, and a filter to remove taste and odor to clean it for drinking. Treated water can also be added to the system.

Wash Water
Wash water is recycled from the washing machine, shower and bathroom sink. The wash water is treated to be used again for washing uses at the washing machine, shower, bathroom, kitchen sink, dishwasher, utility sink and to flush the toilet.

Wash water is treated in four steps using a pre-filter to remove dirt and hair, a pump with air to remove soap, then a filter to remove oils and bacteria and an ultraviolet light to kill viruses.

Waste Water
Water from the kitchen sink, dishwasher, utility sink and toilets drain to a waste water tank. Waste water is pumped out of the house through a button on the outside of the house.

Ten to 17 gallons of waste water is produced each day, depending on the toilet choice. Waste water must be pumped and hauled every three to five days from the 50 gallon waste water tank.

Drinking Water is available at the kitchen and bathroom sink. Treated or fresh water must be hauled or collected every three to five days to refill the 50 gallon fresh water tank. Rain water can be directly piped into the system when available. Fresh or natural water passes through two pre-screening filters, two filters to remove bacteria, and a filter to remove taste and odor to clean it for drinking. Treated water can also be added to the system.

Wash water is recycled from the washing machine, shower and bathroom sink. The wash water is treated to be used again for washing uses at the washing machine, shower, bathroom, kitchen sink, dishwasher, utility sink and to flush the toilet.

Wash water is treated in four steps using a pre-filter to remove dirt and hair, a pump with air to remove soap, then a filter to remove oils and bacteria and an ultraviolet light to kill viruses.

Waste water is recycled from the washing machine, shower and bathroom sink. The wash water is treated to be used again for washing uses at the washing machine, shower, bathroom, kitchen sink, dishwasher, utility sink and to flush the toilet.

Waste water is treated in four steps using a pre-filter to remove dirt and hair, a pump with air to remove soap, then a filter to remove oils and bacteria and an ultraviolet light to kill viruses.

Waste Water
Water from the kitchen sink, dishwasher, utility sink and toilets drain to a waste water tank. Waste water is pumped out of the house through a button on the outside of the house.

Ten to 17 gallons of waste water is produced each day, depending on the toilet choice. Waste water must be pumped and hauled every three to five days from the 50 gallon waste water tank.

Sources of water that can be treated for drinking and cooking purposes include rain, lake, river, ice melt, washeteria water.

Sources of water that can be used for wash water include the shower, bathroom sink and washing machine. Wash water refers to water used in the house for uses besides drinking and cooking.

Hot water is made available by the system for showers, sinks and the clothes washer hook-up.

System components for water treatment are located inside the home. Tanks are incorporated into walls. The wash water treatment system is located in the bathroom.

Sources of water that can be treated for drinking and cooking purposes include rain, lake, river, ice melt, washeteria water.

Sources of water that can be used for wash water include the shower, bathroom sink and washing machine. Wash water refers to water used in the house for uses besides drinking and cooking.

Hot water is made available by the system for showers, sinks and the clothes washer hook-up.

System components for water treatment are located inside the home. Tanks are incorporated into walls. The wash water treatment system is located in the bathroom.

System Highlights
In order for a household of four people to use 60 gallons of water per day, a total of 70 to 120 gallons of water will need to be brought into the home each week.

Also, 70 to 120 gallons of wastewater will need to be removed from the home each week. Wastewater is produced by the kitchen sink, utility sink, dishwasher and toilet.

System components for water treatment are located inside the home. Tanks are incorporated into walls. The wash water treatment system is located in the bathroom.

Questions? Want More Info?
Website: www.summitwsc.com Facebook: www.facebook.com/summitakwsc Contact: meghan@agnewbeck.com or 907.222.5424
IN-HOME SYSTEM DESIGN

- Fits completely within the home.
- Flexible system components to meet home owner needs.
- Designed to be installed and maintained by local labor.

Questions? Want More Info?
Website: www.summitwsc.com Facebook: www.facebook.com/summitakwsc Contact: meghan@agnewbeck.com or 907.222.5424

THE TEAM
Summit Consulting Services www.scsalaska.com
Agnew::Beck Consulting www.agnewbeck.com
Re-Locate www.relocate-ak.org
The biggest drawback of a typical piped water and sewer system is that they are not portable. Some Alaskan communities are vulnerable to flooding and erosion; therefore, some funding agencies have been reluctant to invest in infrastructure. The PASS systems can be assembled and reassembled if a community has to relocate.

The Alaska Native Tribal Health Consortium and the Cold Climate Housing Research Center have designed and implemented a low cost sanitation alternative for communities that are affected by climate change. The PASS systems are approximately $26,000 per household as compared to a traditional piped system that costs approximately $168,000 per household.

The PASS was implemented in nine homes in Kivalina, Alaska. Kivalina has been operating on a self-haul system. This exposure to raw sewage places community members at risk for waterborne pathogens. The innovative systems vastly improve hauling by limiting exposure to waste, minimizing odor, and reducing frequency and weight of hauls.

The system is entirely homeowner-based, designed to address the most basic sanitation needs, and can be moved with the community. The systems are stand-alone models; as homes are moved to the new village site away from the eroding coastline, residents can bring their clean water and safe sewer systems with them.
Waste is separated into liquid and solid components where the liquid is disposed of into a seepage pit and dried solids are disposed of in the landfill.

For an 800-square-foot home with a catchment area of approximately 1,200 square feet, it is possible to recover nearly 3,000 gallons or more of rain each year to supplement the quantity of water hauled to the home.

The grey water tank purges into the seepage pit below when full.

An energy-efficient combined ventilation system dries the waste, reduces odors, and ventilates the home.

Waste is separated into liquid and solid components where the liquid is disposed of into a seepage pit and dried solids are disposed of in the landfill.

The water treatment system incorporates membranes and chlorination for point-of-use treatment to ensure the water is safe to drink despite its condition upon entering the system.
CONFERENCE PARTICIPANTS

Debra Addie, Engineer
Village Safe Water
Anchorage, AK
debra.addie@alaska.gov

Clint Adler, Engineer II
Alaska Department of Environmental Conservation
Anchorage, AK
clint.adler@alaska.gov

Evelyn Agnus, Environmental Scientist
Zender Environmental Health & Research Group
Anchorage, AK
eagnus@zendergroup.org

Megan Alvanna Stimpfle, Principle
Arctic Geopolitical Consulting
Nome, AK
megan.suksraq@outlook.com

Kathryn Anderson, Affiliate Faculty
University of Alaska Anchorage
Anchorage, AK
kathyjanderson@outlook.com

Theodore Angaiak, Maintenance Mechanic
Lower Kuskokwim School District
Tununak, AK
theodore_angaiak@lksd.org

Don Antrobus, Environmentally Threatened Communities
Program Coordinator
Denali Commission
Anchorage, AK
dantrobus@anthc.org

Danielle Arigoni, Acting Director
HUD Office of Economic Resilience
Washington, D.C.
danielle.m.arigoni@hud.gov

Heather Arnett, Principal Advisor, Advocacy
North Star Group
Anchorage, AK
harnett@northstargrp.com

Nicholas Ashbolt, Alberta Innovates Translation Health Chair
Water School of Public Health, University of Alberta, Edmonton
ashbolt@ualberta.ca

Martina Azean
Kongiganak, AK

Michael Bakaic, Graduate Researcher
York University
Toronto, Canada
mbakaic@yorku.ca

Kilby Baron, President
Cowater Alaska
Anchorage, AK
kbaron@cowateralaska.com

Robert Bastian, Senior Environmental Scientist
U.S EPA, Office of Wastewater Management
Washington, D.C.
bastian.robert@epa.gov

Brian Bearden, Operations & Maintenance Engineer/RMW Supervisor
Tanana Chiefs Conference
Fairbanks, AK
brian.bearden@tananachiefs.org

Andrew Beaver
Kwigillingok, AK
abeaver2005@yahoo.com

Veronica Bergman
Allakaket, AK
veronica_bergman@yahoo.com
David Beveridge, Director of Project Management
ANTHC
Anchorage, AK
dbeverid@anthc.org

Michael Black, Director of Program Development
Alaska Native Tribal Health Consortium
Anchorage, AK
mlblack@anthc.org

Carrie Bohan, Operations Assistance Program Manager
ADEC
Juneau, AK
carrie.bohan@alaska.gov

Stephen Bolan, Director Sanitation Facilities Construction
Indian Health Service
Anchorage, AK
stephen.bolan@ihs.gov

Jonathan Bressler, CDC/CSTE Applied Epidemiology Fellow
Alaska Department of Health and Social Services
Anchorage, AK
jonathan.bressler@alaska.gov

Candice Bressler, Public Information Officer
Alaska Department of Environmental Conservation
Juneau, AK
candice.bressler@alaska.gov

Michael Brubaker, Director Community Environment and Health
ANTHC
Anchorage, AK
mbrubaker@anthc.org

Sarah Buckles
Chefnornak, AK
cityofchefornak@yahoo.com

Alida Bus, Legislative Liaison
Alaska Department of Environmental Conservation
Juneau, AK
alida.bus@alaska.gov

Michael Carey, Retired Plumber
UA Local 367 Plumbers and Pipefitters
Anchorage, AK
Goobers@alaska.net

Kimberly Carlo, COO
Interior Regional Housing Authority
Fairbanks, AK
KCarlo@IRHA.org

Guy Carpenter, President
WateReuse Association
NEED CURRENT LOCATION
gcarpenter@aqua-tecture.net

Cindy Christian, Program Manager
AK Department of Environmental Conservation
Fairbanks, AK
cindy.christian@alaska.gov

Jacqueline Cleveland, Cultural Sustainability Advisor
Inuit Circumpolar Council of Alaska
Anchorage, AK
jacqueline@iccalaska.org

Steve Colt, Professor of Economics
Alaska Pacific University
Anchorage, AK
scolt@alaskapacific.edu

Marcia Combes, Arctic Planner
USEPA
Anchorage, AK
combes.marcia@epa.gov

David Cramer, President
Summit Consulting Services, Inc.
Tok, AK
scsdac@aol.com
Chris Dankmeyer, Environmental Health Manager
Maniilaq Association
Kotzebue, AK
chris.dankmeyer@maniilaq.org

Harold David
Allakaket, AK

Valerie Davidson, Commissioner
Department of Health and Social Services, State of Alaska
Anchorage, AK
val.davidson@alaska.gov

Tasha Deardorff, WEP/RAVG Director
USDA Rural Development
Anchorage, AK
tasha.deardorff@ak.usda.gov

Gavin Dixon, Senior Project Manager
ANTHC
Anchorage, AK
gndixon@anthc.org

Kelly Donnelly, Executive Director
Yukon River Inter-Tribal Watershed Council
Anchorage, AK
kdonnelly@yritwc.org

Aaron Dotson, Associate Professor
University of Alaska Anchorage
Anchorage, AK
addotson@alaska.edu

Alexey Dudarev, Head of Hygiene Department
Northwest Public Health Research Center
St-Petersburg, Russia
alexey.d@inbox.ru

Jon Dufendach, President
CampWater Industries LLC
Delta Junction, AK
jondufendach@gmail.com

Rob Earl, Legislative Aide
Alaska State Legislature
Anchorage, AK
rob.earl@akleg.gov

Laura Eichelberger, Assistant Professor of Anthropology
University of Texas at San Antonio
San Antonio, TX
laura.eichelberger@utsa.edu

Carrie Eischens, Research Program Coordinator
USARC
Anchorage, AK
ceischens@arctic.gov

James Englehardt, Professor
University of Miami
Coral Gables, FL
jenglehardt@miami.edu

Marcie Fader, Grants Administrator III
Department of Environmental Conservation
Anchorage, AK
marcie.fader@alaska.gov

Mads Fægetborg, Executive Director
Inuit Circumpolar Council - ICC
Greenland
3900 Nuuk
mads@inuit.org

Craig Fleener, Director of State & Federal Relations
Office of the Governor
Anchorage, AK
Craig.Fleener@alaska.gov

Kathryn Folger
Koyukuk, AK
kathryn.folger@tananachines.org

Eddy Frank
Venetie, AK
venetievillaecouncil@yahoo.com
Andrea Fruean, Grant Administrator II
Village Safe Water
Anchorage, AK
andrea.fruean@alaska.gov

David Fuente, Program Coordinator
The Water Institute at UNC Chapel Hill
Chapel Hill, NC
fuente@unc.edu

Graham Gagnon, Professor
Centre for Water Resources Studies,
Dalhousie University
Halifax, Canada
graham.gagnon@dal.ca

Bailey Gamble, Mechanical Engineer and Educator
Alaska Native Tribal Health Consortium
Anchorage, AK
bbgamble@anthc.org

Hosea Aghogah Gemuh, Student
University of Canterbury
Christchurch, New Zealand
manudex25@gmail.com

Jana George, Chief Executive Officer
Interior Regional Housing Authority
Fairbanks, AK
jgeorge@irha.org

Michael Gerace, Co-Owner
Re-Locate LLC
Anchorage, AK
mjgerace@gmail.com

Stephanie Gould, Sr. Civil Engineer
Stantec Consulting Inc.
Anchorage, AK
stephanie.gould@stantec.com

Prabhu Gounder, Medical epidemiologist
CDC Arctic Investigations Program
Anchorage, AK
iym4@cdc.gov

Richard Greco, Chairman of the Board
Euro Mec Water Group (EMWG)
Seregno, Italy
richard_greco@idro.net

Bill Griffith, Facility Programs Manager
Alaska Department of Environmental Conservation
Anchorage, AK
bill.griffith@alaska.gov

Heather Gross, Summit Consulting Services
Tok, AK
heathergscs2@aol.com

Bruno Grunau, Senior Research Engineer
Cold Climate Housing Research Center
Fairbanks, AK
bruno@cchrc.org

Kristian Hammeken, Student of M.Sc.
Technical University of Denmark
Holte, Denmark
kris.hammeken@gmail.com

Eric Hanssen, Rural Energy Initiative Program Manager
ANTHC
Anchorage, AK
echanssen@anthc.org

Larry Hartig, ADEC
Anchorage, AK
larry.hartig@alaska.gov

Oral Hawley
NEED LOCATION
atmautluaktc@gmail.com

Tyler Heal, Civil Engineering Lead, Yukon
Stantec Consulting Ltd.
Whitehorse, Canada
tyler.heal@stantec.com
Mia Heavener, Senior Civil Engineer
ANTHC
Anchorage, AK
Mia.Heavener@anthc.org

Kåre Hendriksen, Associate Professor
Ph.d.
Arctic Technology Centre
Sisimiut, Greenland/Lyngby, Denmark
krhe@byg.dtu.dk

Thomas Hennessy, Medical Director
CDC Arctic Investigations Program
Anchorage, AK
tbh0@cdc.gov

Sarah Henry
Akiachak, AK
aana_shenry@yahoo.com

Jay Hermanson, Sr. Project Manager
WHPacific
Anchorage, AK
jhermanson@whpacific.com

Joseph Hess, Civil Engineer
Alaska Native Tribal Health Consortium
Anchorage, AK
jehess@anthc.org

Korie Hickel, Sr. Environmental Health Consultant
Alaska Native Tribal Health Consortium
Anchorage, AK
khickel@anthc.org

Sharon Hildebrand, Grad Student
UAS
Fairbanks, AK
sfhildebrand@alaska.edu

Chris Hladick, Commissioner
State of Alaska, DCCED
Juneau, AK
chris.hladick@alaska.gov

Eric Hoberg, Senior Research Zoologist
Agricultural Research Service, USDA
Beltsville, MD
eric.hoberg@ars.usda.gov

Liz Hodges Snyder, Associate Professor of Public Health
Alaska Food Policy Council/University of Alaska Anchorage
Anchorage, AK
ehodges4@alaska.edu

Meghan Holtan
Agnew::Beck
Anchorage, AK
meghan@agnewbeck.com

Leigh Hubbard, Director of Design Services
ANTHC
Anchorage, AK
lphubbard@anthc.org

Melissa Ingersoll, CEO/Program Designer
Teayoumeak,Inc.
Anchorage, AK
Mingersoll80@gmail.com

Pernille Erland Jensen, Associate Professor
Technical University of Denmark
Lyngby, Denmark
pej@byg.dtu.dk

Kenneth Johnson, Principal
Cryofront
St. Albert, Canada
cryofront@gmail.com

Barbara Johnson, Research Assistant
University of Alaska Fairbanks
Fairbanks, AK
bajohnson20@alaska.edu
Jennine Jordan, AAC rep
Arctic economic council
Anchorage, AK
Jjordan@ganaayoo.com

William Justice, Director, Office of Environmental Health
Tanana Chiefs Conference
Fairbanks, AK
william.justice@tananachiefs.org

Kristin K’eil, Environmental Scientist
Zinder Environmental Health and Research Group
Anchorage, AK
kkeit@zendergroup.org

Thomas Kasun, Sr. Business Development Manager
Alcoa
Alcoa Center
thomas.kasun@alcoa.com

Theodore Katcheak
Stebbins, AK
emkatcheak@yahoo.com

Camilla Kennedy, Economist
ADEC
Anchorage, AK
camilla.kennedy@alaska.gov

Erinne Kennedy, Resident
Harvard School of Dental Medicine
Boston, MA
erinne.kennedy@gmail.com

Carolyn Kozak, Graduate Student
University of Alaska Fairbanks
Fairbanks, AK
cjkozak@alaska.edu

Marleah Makpiaq LaBelle, Project Manager
Alaska Native Tribal Health Consortium
Anchorage, AK
mmlabelle@anthc.org

Michele LeBlanc-Havard, Environmental Health Specialist
Government of Nunavut
Iqaluit, CANADA
mleblanc-havard@gov.nu.ca

Sean Lee, Engineer Associate
DEC Village Safe Water
Anchorage, AK
sean.lee@alaska.gov

Donna Lee, VSW Engineer
DEC Village Safe Water
Anchorage, AK
donna.lee@alaska.gov

Brian Lefferts, Director, Environmental Health & Engineering
Yukon-Kuskokwim Health Corporation
Bethel, AK
brian_lefferts@ykhc.org

Bernadette Lewis, Executive Director
Chefornak Traditional Council
Chefornak, AK
cyf_tcoffice@yahoo.com

Svetlana Maksimova, Associate Professor of Water Supply and Sanitation Department
Industrial University of Tyumen
Tyumen, Russia
msv020761@yandex.ru

Jennifer Marlow, Co-Owner
Re-Locate LLC
Anchorage, AK
jmarlow@hailmail.net

Holly Martinson, Postdoctoral Fellow
University of Alaska Anchorage
Anchorage, AK
hamartinson@alaska.edu

John Matthews, Secretariat Coordinator
Alliance for Global Water Adaptation
Corvallis, OR
johoma@alliance4water.org
Ann Meceda, Arctic Affairs Officer
Department of State
Washington, D.C.
mecedaa@state.gov

Andrew Medeiros, Adjunct Professor
York University
Toronto, Canada
fraggle@yorku.ca

Andrea Meeks, Project Manager
CRW Engineering Group, LLC
Anchorage, AK
ameeks@crweng.com

Paul Mountain, Tribal Administrator
Nulato Tribal Council
Nulato, AK
paul.mountain@tananachiefs.org

William Naneng, General Manager
Sea Lion Corporation
Hooper Bay, AK
will@sealioncorp.net

Joel Neimeyer, Federal Co-Chair
Denali Commission
Anchorage, AK
jneimeyer@denali.gov

Chase Nelson, Arctic/Civil Engineer
DOWL
Fairbanks, AK
cnelson@dowl.com

Heather Newman, Environmental Program Manager I
State of Alaska, Dept. of Environmental Conservation
Anchorage, AK
heather.newman@alaska.gov

Willie Nicholai
Atmautluak, AK
atmautuaktc@gmail.com

John Nichols, Manager of Utility Operations
Alaska Native Tribal Health Consortium
Anchorage, AK
jpnichols@anthc.org

Flora Nickoli, Council Member
Nulato City Council
Nulato, AK
igapntc@outlook.com

Leisha Nolen, Medical Epidemiologist
Centers for Disease Control and Prevention
Anchorage, AK
xdf8@cdc.gov

Jim Nordlund, Alaska State Director
USDA Rural Development
Palmer, AK
jim.nordlund@ak.usda.gov

Becky Norton
Kivalina, AK
beck_kvls@yahoo.com

Melanie O’Gorman, Associate Professor
University of Winnipeg
Winnipeg, Canada
m.ogorman@uwinnipeg.ca

Fatima Ochante, Program Planner & Coordinator
Alaska Department of Environmental Conservation
Fairbanks, AK
fatima.ochante@alaska.gov

Karl Ohls, Senior Policy Advisor
North Star Group/The Arctic Report
Anchorage, AK
kohls@northstargrp.com

Blanche Okbauk-Garnie
Teller, AK
sisgarnie@yahoo.com
Shady Grove Oliver, Reporter
The Arctic Sounder
Anchorage, AK
sgoarctic@gmail.com

Albert Oquilluk
Teller, AK
aoquilluk@yahoo.com

Ronald Parker, Project Manager
Cowater Alaska Inc.
Anchorage, AK
rparker@cowateralaska.com

Jonathan Pavila
Tuntutuliak, AK
jpavila@tuntutuliaktc.org

Moses Pavilla
Atmautluak, AK

Stephen Penner, Master’s of Development Practice Student in Indigenous Development
University of Winnipeg
Winnipeg, Canada
srpenner@mac.com

Sean Peterson, Environmental Scientist
Zender Environmental Health and Research Group
Anchorage, AK
speterson@zendergroup.org

Rhonda Pitka, Chief
Beaver Village Council
Beaver, AK
rpitka@beavercouncil.org

Doug Poage, Engineer
Village Safe Water
Anchorage, AK
doug.poage@alaska.gov

Rebecca Pollis, Sanitation Facilities Program Manager
ANTHC
Anchorage, AK
 rpollis@anthc.org

Patrick Pavila
Tuntutuliak, AK
patrickpavila97@gmail.com

Rob Quick, Medical Epidemiologist
CDC
Atlanta, GA
rxq1@cdc.gov

Susan Randlett, VSW Engineer I
State of Alaska
Anchorage, AK
susan.randlett@alaska.gov

Carma Reed, CPD Director, Anchorage Field Office
U.S. Department of Housing and Urban Development
Anchorage, AK
carma.reed@hud.gov

Daniel Reichardt, Engineer I, DEC
State of Alaska Drinking Water Program
Anchorage, AK
daniel.reichardt@alaska.gov

Roy Robertson, Engineer
State of Alaska DEC Drinking Water Program
Anchorage, AK
roy.robertson@alaska.gov

Janelle Rogers, Senior Vice President
CDM Smith
Nashville, TN
rogersjd@cdmsmith.com
Arthur Ronimus, Owner
A&E Professional Services
Eagle River, AK
aronimus@gci.net

Cheryl Rosa, Deputy Director
US Arctic Research Commission
Anchorage, AK
crosa@arctic.gov

Parke Ruesch, Engineering Manager
Summit Consulting Services, Inc.
Anchorage, AK
pruesch@scsalaska.com

AJ Salkoski, Sr. Program Manager
ANTHC
Anchorage, AK
ajsalkoski@anthc.org

James Sceeles, CEO
Tagiugmiullu Nunamiullu Housing Authority
Barrow, AK
James.Sceeles@tnha.net

Christopher Schulz, SVP
CDM Smith
Denver, CO
schulzcr@cdmsmith.com

Simone Sebalo
Zender Environmental Health and Research Group
Anchorage, AK
ssebalo@zendergroup.org

Kirsten Selinger, Senior Environment and Energy Officer
US Department of State
Washington, D.C.
selingerkb@state.gov

Brittany Seymour, Assistant Professor
Harvard School of Dental Medicine
Boston, MA
brittany_seymour@hsdm.harvard.edu

Jacqueline Shirley, Rural Development Specialist
Rural Community Assistance Corporation
Anchorage, AK
Jshirley@rcac.org

Terry Smith, Chief Operating Officer
Fluor-Brady
San Diego, CA
tsmith@rbrady.net

Henry Smoke
Stevens Village, AK
svs.ira.council@gmail.com

Dianne Soderlund
Director, Alaska Operations Office
Environmental Protection Agency
Anchorage, AK
soderlund.dianne@epa.gov

Dolly Swan, Community Member
Kivalina, AK
Anchorage, AK
korie.hickel@gmail.com

Replogle Swan, Community Member
Kivalina, AK
Anchorage
aviigan@yahoo.com

Dean Syta, Engineering Manager
Stantec Consulting Services
Anchorage, AK
dean.syta@stantec.com

Julia Taylor, Journalist, Rural Development student
UAF
Fairbanks, AK
Jmtaylor14@alaska.edu
James Temte, Director, National Tribal Water Center
Alaska Native Tribal Health Consortium
Anchorage, AK
jrtemte@anthc.org

Timothy Thomas
Director, Clinical and Research Services
Alaska Native Tribal Health Consortium
Anchorage, AK
tkthomas@anthc.org

Mitch Titus
Civil Engineer
DOWL
Fairbanks, AK
mtitus@dowl.com

Vincent Tocktoo
Village of Shishmaref
Shishmaref, AK
cityofshhclerk@gci.net

Bob Tsigonis, Founder/President
Lifewater Engineering Company
Fairbanks, AK
bob@lifewaterengineering.com

Luanne Urfer, Principal/Owner
Sustainable Design Group
Palmer, AK
luanneu@sdg-ak.com

Jeanine Vance, Environmental Program Specialist
Alaska Department of Environmental Conservation
Anchorage, AK
jeanine.vance@alaska.gov

Dennis Wagner, Infrastructure Programs Manager
EPA
Anchorage, AK
wagner.dennisx@epa.gov

Jeff Warner, Environmental Program Manager
State of Alaska/DEC
Anchorage, AK
jeff.warner@alaska.gov

John Warren, Engineering Services Director
Alaska Native Tribal Health Consortium
Anchorage, AK
jwarren@anthc.org

Steve Weaver, DEHE Senior Director
ANTHC
Anchorage, AK
sweaver@anthc.org

Kate Wedemeyer, Fisheries Oceanographer
BOEM
Anchorage, AK
kate.wedemeyer@boem.gov

Bob White, Remote Maintenance Worker
Yukon-Kuskokwim Health Corporation
Bethel, AK
robert_white@ykhc.org

Corrie Whitmore, Assistant Professor of Health Sciences
University of Alaska Anchorage
Anchorage, AK
whitmore@uaa.alaska.edu

Erin Whitney, Research Assistant Professor
Alaska Center for Energy and Power, University of Alaska Fairbanks
Anchorage, AK
erin.whitney@alaska.edu

Jonathan Widdis, Vice President
NANA Pacific, Inc.
Anchorage, AK
jonathan.widdis@nanapacific.com
MaryAnn Wiehl
Rampart, AK
maw.rvc@gmail.com

George Wilson, VSW Engineer II
SOA/Village Safe Water
Anchorage, AK
george.wilson@alaska.gov

Noah Wise
Nunapitchuk, AK
cityofnunap@yahoo.com

Peter Workman, Chief Environmental Health Officer
Department of Health and Social Services Government of Northwest Territories
Yellowknife, AK
peter_workman@gov.nt.ca

Carlee Wright, Masters Student (Epidemiology)
University of Guelph
Guelph, Canada
carlee@uoguelph.ca

Lynn Zender
Zender Environmental Health
Anchorage, AK
lzender@zendergroup.org
Fatima Ochante, Chris Dankmeyer and Andrew Beaver observe pilot systems presentations
The WIHAH conference brought together Alaskan, U.S., and international engineers, health experts, researchers, community members, policymakers, and innovators to discuss health benefits, challenges and innovations associated with making running water and sewer in remote northern communities safe, affordable and sustainable. It included expert speaker and poster presentation sessions, along with selected innovative technical demonstrations.

This circumpolar conference is identified as an official event in conjunction with the U.S. Chairmanship of the Arctic Council, as an endorsed project of the Arctic Council Sustainable Development Working Group. The Alaska Department of Environmental Conservation is partnering with a number of U.S. agencies to sponsor this informative conference. Federal sponsors include the U.S. Environmental Protection Agency, U.S. Arctic Research Commission; the U.S. Centers for Disease Control and Prevention; the U.S. Department of State; and the U.S. Department of Agriculture, Rural Development Program.
Conference Presentations

Opening Remarks

- WIHAH Welcome Remarks – Larry Hartig
- WIHAH Opening Remarks – Bill Griffith

Keynotes

- Climate Change, Disaster Resilience and Relocation at HUD – Danielle Arigoni
- Climate Change Consequences – Eric Hoberg
- The Impact of Water and Sanitation Services on Health – Tom Hennessy
- Pathogen risk management considerations for safe household water uses – Nick Ashbolt
- Reuse Regulations and Challenges of Regulating On-site Systems – Guy Carpenter
- An Introduction to the Arctic Council and the Sustainable Development Working Group – Ann Meceda
- Water Security in the Arctic: Perspectives from the Model Arctic Council – Carolyn Kozak, Sharon Hildebrand, Stephen Penner

International Reception Presentations

- Arctic WASH contributions from the Kingdom of Denmark – Pernille Jensen & Kristian Hammeken
- A Bend in the River: Transitioning to a Time of Permanent Change – John Matthews

Overview of Household Pilot Systems in Development
Overview of State of Alaska Water & Sewer Challenge Project
- State of Alaska Water & Sewer Challenge – Team: DOWL Alaska
- State of Alaska Water & Sewer Challenge – Team: Summit Consulting

Conference Theme: The Impact of Household Water and Sanitation on Arctic Human Health
- Community Perspectives on Water Insecurity in Rural Alaska – Laura Eichelberger
- Education and Behavior Change Efforts to Maximize the Health Benefits and Sustainability of Water and Sanitation – AJ Salkoski & John Nichols
- Impact of In-home Piped Water on Rates of Infectious Disease – The Four Village Study – Tim Thomas
- Water Quality and Health in Northern Canada: Contamination of Stored Drinking Water and Associations with Acute Gastrointestinal Illness in an Inuit Community – Carlee Wright

Conference Theme: Climate Change Impacts on Water and Sanitation Infrastructure in the Arctic
- Vulnerability of northern water supply lakes to changing climate and demand – Michael Bakaic
- Vulnerability of fresh water supply in Arctic Canada – Andrew Medeiros & Michael Bakaic
- Climate Change and Community Water Security Emerging Challenges and Strategies – Mike Brubaker
- Survey on Water and Sanitation in the Arctic: Access, Disease Surveillance, and Threats from Climate Change – Jonathan Bressler & Tom Hennessy

Conference Theme: Innovative Engineering Approaches to Increase Access to Water of Adequate Quality and Quantity, Including Water Reuse
- Charting a new direction for wastewater treatment in the Canadian north – Ken Johnson
- Natural Engineered Wastewater Treatment: NEWT – Thomas Kasun
- Preliminary Test Results from an Electrically-Assisted, Anaerobic Sewage Treatment System – Bob Tsigonis
- Relocate: Kivalina Biochar Reactor – Jennifer Marlow & Michael Gerace
- Potentials and challenges of biogas from fish industry waste in the Arctic – Pernille Jensen

Conference Theme: Regulations and Policies Affecting Access to and the Cost of Providing Adequate Quantities of Water in the Home
Beyond Education: Using Social Change Marketing to Drive Behavior Change – Kathy Anderson
Sewer and Water Regulatory Reform in Alaska – Megan Alvanna-Stimpfe

Conference Theme: Methods of Ownership, Operations and Maintenance to Maximize Useful Life of Water and Sewer Systems in the Arctic

- Applying a Water Safety Plan Approach – Graham Gagnon
- A New Affordability Indicator for Rural Alaskan Water Utilities – Barbara Johnson
- Maximizing Sustainability in Arctic Water and Sewer: Energy Efficiency – Gavin Dixon
- Water is Life Project – James Temte
- Michael Black – Techniques and design of building to make it more compatible with this new Arctic environment

Country Comparisons: Water & Sanitation Service

- Overview of Information Addressed through Country Comparisons
- Denmark (Greenland) – Kåre Hendriksen
- Canada (Nunavut) – Michele LeBlanc-Harvard
- Canada (NW Territories) – Peter Workman
- Canada (Yukon) – Tyler Heal
- United States (Alaska) – Bill Griffith

© 2016 WIHAH
Welcoming Remarks
Larry Hartig
Commissioner
Alaska Department of Environmental Conservation
WIHAH Sponsors
Alaska Department of Environmental Conservation: Helping to build and maintain safe water and sewer services in remote arctic communities

- Village Safe Water Program
- Operations Assistance Program, including Operator Certification and Remote Maintenance Workers
- Drinking Water Program
- Wastewater Discharge Authorization Program
Progress in Alaska Village Sanitation

• 30 years ago, fewer than 25% of rural Alaska households had running water and flush toilets.
• In 1996, 55% of rural homes had piped or covered haul service.
• Today, approximately 85% of rural homes have indoor plumbing (over 90% if regional hubs are included in the calculation).
• Almost $2.5 billion invested to date.
• 3,300 homes in Alaska are still without running water and sewer service, primarily in 30 villages without centralized systems.

• These villages are the most challenging to serve. Many are small and prone to flooding, and may lack good water sources and gravel for construction.

• Estimated capital cost of serving these villages ranges from $15 million - $65 million (between $400,000 - $2 million per home)

• Many communities cannot afford the high operation cost associated with piped or haul systems, which can exceed $200 per month per household (over 5% of median household income)
The Alaska Water and Sewer Challenge

• State-funded research and development project, started in 2013
• Projected to last 5 - 7 years
• Focus on “decentralized” approaches - household based systems that utilize water re-use technologies
• Goal is to significantly reduce the capital and operating costs of in-home running water and sewer in rural Alaska homes
Overview of Household Pilot Systems

Prototypes will be showcased in the Denali Room Monday and Tuesday afternoons (session is repeated)

Alaska Native Tribal Health Consortium:
- Kivalina system

Alaska Water & Sewer Challenge:
- University of Alaska Anchorage
- DOWL Engineering
- Summit Consulting
Presentations include Alaska, Russia, Greenland, and Canada, including Yukon, Nunavut and Northwest Territories.

Information about water and sewer service levels, costs, regulations, and current challenges.
Conference Themes
All speaker tracks repeated

• Impact of household water and sanitation on Arctic human health
• Climate change impacts on water and sanitation infrastructure in the Arctic
• Innovative engineering approaches to increase access to water of adequate quality and quantity, including water reuse
• Methods of ownership, operations and maintenance to maximize useful life of water and sewer systems in the Arctic
• Regulations and policies affecting access to and the cost of providing adequate quantities of water in the home
ANCHORAGE, ALASKA 2016 SEPTEMBER 18 - 21
WATER INNOVATIONS FOR HEALTHY ARCTIC HOMES
Opening Session

Bill Griffith

Facility Programs Manager
Alaska Department of Environmental Conservation
WIHAH Conference Planning Committee

- Stephen Bolan, *US Indian Health Service*
- Jonathan Bressler, *Alaska Department of Health and Social Services*
- Tasha Deardorff, *US Department of Agriculture - Rural Division*
- Carrie Eischens, *US Arctic Research Commission*
- Josh Glasser, *US Department of State*
- Bill Griffith, *Alaska Department of Environmental Conservation*
- Thomas Hennessy, *Arctic Investigations Program, US Centers for Disease Control and Prevention*
- Korie Hickel, *Alaska Native Tribal Health Consortium*
- Sharon Hildebrand, *University of Alaska Southeast*
- Elizabeth Hodges, *University of Alaska Anchorage*
- Carolyn Kozak, *University of Alaska Fairbanks*
- Brian Lefferts, *Yukon-Kuskokwim Health Corporation*
- Fatima Ochante, *Alaska Department of Environmental Conservation*
- Cheryl Rosa, *US Arctic Research Commission*
- Tim Thomas, *Alaska Native Tribal Health Consortium*
- Dennis Wagner, *US Environmental Protection Agency*
200 Conference Participants, including:

• 19 people from 6 other countries, including Canada, Russia and Greenland
• 17 people from the Lower 48
• 30 people from 20 different remote Alaska Villages
• 34 additional Alaskans from outside Anchorage
Emergency Exits and Restrooms
Reminders…

Please silence cell phones in this and other conference rooms.

Conference rooms can get cold, so carry a jacket or sweater if needed.
Overview of Conference Structure

• Mini-breakfast is served in the Denali Room, next door, 7:00 - 8:00 am.
• Morning plenary session is 8:00 - 9:30 am, followed by morning break.
• Morning and afternoon speaker tracks are across the hall and next door in the Denali Room.
• Lunch served in Alaska/Aleutian room (where we are now) at noon.
• Afternoon snacks and drinks are served in the hallway during break.

• All speaker tracks are scheduled twice. With a little planning, you can attend every session.
 (Health track this morning, go to Engineering Track this afternoon. Climate track this morning, go to Pilot Systems this afternoon.)
Please note:

• All Alaska village travelers: Please make sure to check in at the registration desk and pick up your envelope.
• Tables are available up for vendor information.
• All presentations will be posted on the conference website.
• Abstracts will also be posted on the website, and will be included in the conference proceedings.
• A press room is available for interviews.
• Allyson Taylor is conference coordinator, and she can assist with any logistical questions and contacts. (Wearing a black vest.)
Denali Room (next door):

• Overviews of household pilot systems will be presented on Tuesday and Wednesday afternoon.
• Displays are available for viewing throughout the conference.
• Representatives from pilot system teams will be available after lunch and during breaks.
• Display about the graywater treatment lab, operated by the Yukon Kuskokwim Health Corporation, is also set up on the wall.
• Sign up sheet for Tuesday evening field trip to the University of Alaska, Anchorage pilot system. (Tuesday at 6:00 pm)
An Introduction to the Arctic Council and the Sustainable Development Working Group

Ann Meceda
Arctic Affairs Officer, Acting Chair SDWG
U.S. Department of State

September 19, 2016
Arctic Council Overview

• High level forum, not an international organization
• 8 Arctic States make decisions by consensus
• Mandate: environmental protection and sustainable development
• “The Arctic Council should not deal with matters related to military security”
• Role of Permanent Participants
Observers in the Council

12 State Observers

<table>
<thead>
<tr>
<th>Country</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>1998</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1998</td>
</tr>
<tr>
<td>France</td>
<td>2000</td>
</tr>
<tr>
<td>Italy</td>
<td>2013</td>
</tr>
<tr>
<td>China</td>
<td>2013</td>
</tr>
<tr>
<td>Japan</td>
<td>2013</td>
</tr>
<tr>
<td>Poland</td>
<td>1998</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>1998</td>
</tr>
<tr>
<td>Spain</td>
<td>2006</td>
</tr>
<tr>
<td>India</td>
<td>2013</td>
</tr>
<tr>
<td>Republic of Korea</td>
<td>2013</td>
</tr>
<tr>
<td>Singapore</td>
<td>2013</td>
</tr>
</tbody>
</table>

20 Inter-Governmental, Inter-Parliamentary and Non-Governmental Observers

<table>
<thead>
<tr>
<th>Organization</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Nations Economic Commission for Europe</td>
<td>1998</td>
</tr>
<tr>
<td>United Nations Environment Program</td>
<td>1998</td>
</tr>
<tr>
<td>Nordic Council of Ministers</td>
<td>1998</td>
</tr>
<tr>
<td>Standing Committee of the Parliamentarians of the Arctic Region</td>
<td>1998</td>
</tr>
<tr>
<td>International Federation of Red Cross & Red Crescent Societies</td>
<td>2000</td>
</tr>
<tr>
<td>International Union for the Conservation of Nature</td>
<td>2000</td>
</tr>
<tr>
<td>North Atlantic Marine Mammal Commission</td>
<td>2000</td>
</tr>
<tr>
<td>United Nations Development Program</td>
<td>2002</td>
</tr>
<tr>
<td>Nordic Environment Finance Corporation</td>
<td>2004</td>
</tr>
<tr>
<td>International Arctic Science Committee</td>
<td>1998</td>
</tr>
<tr>
<td>Northern Forum</td>
<td>1998</td>
</tr>
<tr>
<td>International Union for Circumpolar Health</td>
<td>1998</td>
</tr>
<tr>
<td>Advisory Committee on Protection of the Seas</td>
<td>2000</td>
</tr>
<tr>
<td>Association of World Reindeer Herders</td>
<td>2000</td>
</tr>
<tr>
<td>Circumpolar Conservation Union</td>
<td>2000</td>
</tr>
<tr>
<td>International Arctic Social Sciences Association</td>
<td>2000</td>
</tr>
<tr>
<td>International Work Group for Indigenous Affairs</td>
<td>2002</td>
</tr>
<tr>
<td>University of the Arctic</td>
<td>2002</td>
</tr>
<tr>
<td>Arctic Cultural Gateway</td>
<td>2004</td>
</tr>
</tbody>
</table>

16 Pending Observer Applications

- Turkey
- Greece
- Switzerland
- Mongolia
- Oceana
- Association of Oil and Gas Producers
- OSPAR (the Oslo-Paris Commission)
- Greenpeace
- International Hydrographic Organization
- Association of Polar Early Career Scientists
- World Meteorological Organization
- Norwegian Scientific Academy for Polar Research
- International Chamber of Shipping
- International Council for the Exploration of the Sea
- West Nordic Council
- National Geographic Society
U.S. Chairmanship

- April 2015 – May 2017
- Finland next
- Second U.S. Chairmanship in the 20 year Council History
- “One Arctic: Shared Opportunities, Challenges and Responsibilities”
U.S. Chairmanship Team

Chair of the Arctic Council
Secretary of State John Kerry

Coordinator of the Chairmanship
Special Representative for the Arctic, Admiral Robert Papp

Special Advisor on Arctic Science and Policy
Fran Ulmer

Chair of the Senior Arctic Officials
Ambassador David Balton

U.S. Senior Arctic Official
Julie Gourley
U.S. Chairmanship Pillars

• “One Arctic: Shared Opportunities, Challenges and Responsibilities”

 – Improve economic and living conditions
 – Address the impacts of climate change
 – Promote Arctic Ocean safety, security and stewardship
Arctic Council Structure
2015 – 2017 Chairmanship: UNITED STATES
*Six indigenous groups (“Permanent Participants”) participate at all levels

Ministers

Senior Arctic Officials (SAOs)

Task Force on Scientific Cooperation
Co-chairs: US, RUS

Task Force on Arctic Marine Cooperation
Co-chairs: US, NOR, IC

Expert Group on Black Carbon and Methane
Chair: US

Task Force on Arctic Telecommunications Infrastructure
Co-chairs: NOR, DK

Working Groups

Arctic Monitoring and Assessment Program (AMAP)
Chair: Finland

Arctic Contaminants Action Program (ACAP)
Chair: Sweden

Protection of the Arctic Marine Environment (PAME)
Chair: Canada

Emergency Prevention Preparedness and Response (EPPR)
Chair: United States

Conservation of Arctic Flora and Fauna (CAFF)
Chair: Norway

Sustainable Development Working Group (SDWG)
Chair: United States
Mandate of the SDWG

- “to advance sustainable development in the Arctic, including opportunities to protect and enhance the environment and the economies, culture and health of indigenous communities and of other inhabitants of the Arctic, as well as to improve the environmental, economic and social conditions of Arctic communities as a whole.”

Barrow, Alaska, October 13, 2000
SDWG Projects

Include:

• Water, Sanitation and Health
• Renewable Energy
• Telecommunications Infrastructure
• Suicide Prevention and Mental Wellness
• Preservation of Traditional Food Culture
WASH Project: Improving Health through Safe and Affordable Access to Household Running Water and Sewer in Arctic and Sub-Arctic communities

- To catalyze further domestic and international work and cooperation
- Co-lead with Kingdom of Denmark
- Two conferences:
 - ARTEK, Sisimuit, Greenland - April 2016
 - WIHAH, Anchorage, AK – Sept 2016
Project Desired Outcomes

• The conferences, their reports, and relevant side meetings will:
 – promote the exchange of ideas regarding technical, governance, and regulatory approaches and flexibility for safe sanitation systems.

• Survey of circumpolar WASH infrastructure

• Summary report to Ministers
Climate Change, Disaster Resilience and Relocation at HUD

Danielle Arigoni, Acting Director, HUD’s Office of Economic Resilience
1974+: CDBG
2000+: CDBG-Disaster Recovery
2010-2015: Innovative regional planning
2014-2016+: Rebuild by Design and NDRC
2010+: Priority goal for energy
2016+: ConPlan, vulnerability mapping and relocation
1974-present: CDBG Block Grants

More than $150 billion to date
1200+ grantees, 7000+ local governments funded
2005-present: CDBG Disaster Recovery

More than $45 billion to date
29+ states, 23+ local governments
CDBG-DR Process

CONGRESS
Approves appropriation

HUD
1. Calculates & announces allocations
2. Publishes a notice in the federal register
3. Awards funds

GRANTEE
1. Prepares action plan
2. Administers programs or activities or works with another entity to distribute funds
2010-2015: Sustainable Communities Planning Grants

$240 million in planning grants (regional & district scale); 80% of US

Legend:
- FY2010 Community Challenge Grantees
- FY2011 Community Challenge Grantees
- FY2010 Regional Planning Grantees
- FY2011 Regional Planning Grantees

SCI GRANTEES

143 grants (regional & district scale); 80% of US
Sustainable Communities Plans

- Economic development and diversification plans
- Climate change and adaptation plans
- Increasing housing and transportation choices
- Modernizing zoning codes and land use provisions
- Affordable housing studies and plans
- Green infrastructure
- Fair Housing and Equity Assessments (FHEA)
2014: Rebuild by Design

$1 billion in CDBG-DR
6 grants in Sandy-affected region (NYS, NJ, NYC)
Rebuild by Design

- RESIST
- WEEHAWKEN COVE
- WETLANDS
- BIORETENTION BASIN
- Path as Defense
- Boat House
- Multi-Function Defense

HOBOKEN
Rebuild by Design

THE BIG U - PRINCIPLES

TAILored Resiliency

Design solutions for protection in the city become hybrid solutions, each custom tailored to their specific place, time and program. The artful combination of a classic engineered infrastructural element with desirable social functions of each community can produce an almost unnoticeable protection. There is nothing that is not so complex about protection. On the most basic level, the task is to make a barrier of a certain height. At the core of these design challenges is the requirement that it be done in a way that does not look like concrete barriers, but is an upgrade to the social and cultural conditions.

Robert Moses

Jane Jacobs
THE EAST RIVER PARK BIKEWAY

The East River Bikeway and park service road undulate with the base of the berm, creating diverse biking and jogging experiences. Benches wrap around existing trees, creating intimate seating nooks and preserving the park’s canopy.
$1 billion in CDBG-DR grants
13 grantees: 8 states and 5 local governments
NDRC Process

Phase 1
Framing Unmet Recovery Needs, Vulnerabilities, and Community Development Objectives

- **NOFA PUBLISHED**
 - **9/17/2014**
- **PHASE 1 APPLICATION DEADLINE**
 - **3/27/2015**
- **PHASE 1 REVIEW PERIOD**
 - **60 DAYS (~2 MONTHS)**
- **PHASE 1 WINNERS ANNOUNCED**
 - **6/22/2015**

Phase 2
From Framing to Implementation

- **PHASE 2 APPLICATION DEADLINE**
 - **10/27/2015**
- **PHASE 2 REVIEW PERIOD**
- **PHASE 2 WINNERS ANNOUNCED**
 - **1/21/2016**
NDRC Goals

1. Fairly allocate funds from PL 113-2 CDBG-DR pool
2. Apply science-based and forward-looking risk analysis
3. Institutionalize thoughtful, innovative, and resilient approaches
4. Provide resources to recover from disaster while making them more resilient to a range of shocks and stresses
5. Fully engage stakeholders
6. Leverage investments from local, state, federal and philanthropic partners
NDRC Awards

<table>
<thead>
<tr>
<th>Applicant</th>
<th>CDBG-NDR Nationwide Funds</th>
<th>CDBG-NDR Set-Aside Funds</th>
<th>Total CDBG-NDR Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>State of California</td>
<td>$70,359,459</td>
<td></td>
<td>$70,359,459</td>
</tr>
<tr>
<td>State of Connecticut</td>
<td>$54,277,359</td>
<td></td>
<td>$54,277,359</td>
</tr>
<tr>
<td>State of Iowa</td>
<td>$96,887,177</td>
<td></td>
<td>$96,887,177</td>
</tr>
<tr>
<td>State of Louisiana</td>
<td>$92,629,249</td>
<td></td>
<td>$92,629,249</td>
</tr>
<tr>
<td>City of New Orleans, LA</td>
<td>$141,260,569</td>
<td></td>
<td>$141,260,569</td>
</tr>
<tr>
<td>State of New York</td>
<td></td>
<td>$35,800,000</td>
<td>$35,800,000</td>
</tr>
<tr>
<td>City of New York, NY</td>
<td>$45,800,00</td>
<td>$130,200,000</td>
<td>$176,000,000</td>
</tr>
<tr>
<td>City of Springfield, MA</td>
<td>$17,056,880</td>
<td></td>
<td>$17,056,880</td>
</tr>
<tr>
<td>State of Tennessee</td>
<td>$44,502,374</td>
<td></td>
<td>$44,502,374</td>
</tr>
<tr>
<td>Shelby County, TN</td>
<td>$60,445,163</td>
<td></td>
<td>$60,445,163</td>
</tr>
<tr>
<td>City of Minot, ND</td>
<td>$74,340,770</td>
<td></td>
<td>$74,340,770</td>
</tr>
<tr>
<td>State of New Jersey</td>
<td></td>
<td>$15,000,000</td>
<td>$15,000,000</td>
</tr>
<tr>
<td>Commonwealth of Virginia</td>
<td>$120,549,000</td>
<td></td>
<td>$120,549,000</td>
</tr>
<tr>
<td>Grand Total</td>
<td>$818,108,000</td>
<td>$181,000,000</td>
<td>$999,108,000</td>
</tr>
</tbody>
</table>
NDRC Awards

California

Shelby County, TN

State of Louisiana
NDRC Progress in Resilience Policy

Activities featured:
- Resettlement away from vulnerable areas
- Housing elevation/retrofits
- Alternative energy generation/distribution
- (Lots of) green infrastructure
- Local economic development
- Workforce training
- Expanded transportation networks
- New parks/recreational areas
- Innovative financing structures
- Enhanced local planning
- Energy-efficiency
- Evaluation/monitoring

Major policy achievements:
- Broad understanding of “resilience”
- Data-driven planning
- Deep citizen engagement in process/visioning
- Long-term commitments made by all applicants
- Alignment with other plans
- Connection to previously-funded regional sustainability plans
- Diversity of state/city agencies comprising teams
- Focus on metrics ... how to measure resilience
- Widespread use of green infrastructure as solution
- Adoption of “single investment, multiple benefit” ethos
2010+: HUD Priority Goal for Energy

1.2 million green and healthy homes
Via HUD investments and voluntary partnerships
(Better Buildings Challenge, Renew 300)
2016+: Secretary’s Goals for Climate

New ConPlan rule (disaster/climate considerations); vulnerability mapping; equitable relocation principles.
REBUILD BY DESIGN

HUD.GOV/resilience
Chugach Mtns
Near Portage Glacier
Spring 1976
Climate Change Consequences

Climate sets the stage upon which the evolutionary and ecological play is enacted.
Thinking About Water

Water has always appeared available, we don’t often think directly about what services this vital resource provides-

Water is rare, in northern/polar deserts.

Life becomes possible and is sustainable in otherwise extreme and variable northern environments.
Accelerating Climate Change:
A Warming World and Consequences for
Sustainability and Safety of
Arctic Water and Food Resources

Conference on Water Innovations for Healthy Arctic Homes
Anchorage, Alaska/ September 2016

Eric P. Hoberg

US National Parasite Collection
Agricultural Research Service, US Department of Agriculture
and
Smithsonian Institution
Climate and Biodiversity

Climate- mediates distribution and persistence of permissive environments

Climate- alternating episodes of perturbation and stability mediate faunal assembly/ emergent disease

Climate interacts with evolution, ecology and biogeography determining the structure of the biosphere
IPCC AR4 Synthesis, 2007
Phases of Water

Pallasjärvi, Finland
June 2004
Phases of Water

Water and phases of water are central to living in circumpolar environments.

Phenology/ Phases of Water Determine:

- Drinking sources, suitability, availability, safety
- Travel pathways (duration of ice versus liquid)
- Integrity of aquatic ecosystems
- Access, availability, security for food resources
Climate – Water Challenges

- Lack of consistent access to potable drinking water/ sanitation infrastructure
- Increasing exposures to contaminated surface water resources
- Circulation of pollutants and pathogens in traditional diets drives loss of access to reliable water-based food resources
Anticipating Climate Warming
Anticipating Climate Warming

- High sensitivity to accelerating warming
- Declining snow fall, reduced precipitation in a dry environment
- Reduced duration—snow and ice cover
- Frequency spring floods/ storm surges
- Accelerated melt, glaciers/ permafrost
- Declining lake abundance, draining wetlands on discontinuous permafrost
Increasing Temperature

- Broadening seasonal windows for circulation and exposures to pathogens
- New permissive conditions/ development
- Geographic range expansion/ invasion
- Extended persistence of pathogens
- Tipping points & thresholds in transmission
 - Shifts in years, not months
- Potential for extinction and extirpation
Consequences Climate Warming

- Unpredictable water availability
 - Fragile infrastructure water/sanitation
- Long range atmospheric transport organic pollutants
- Bioamplification through food-chains for mercury and POP’s
- Increasing anthropogenic stressors
- Cumulative and synergistic effects
Influence of Climate/ Water

- Spatial/ Temporal distributions of wildlife/ migration, habitat use
- Wildlife numbers, population structure
- Access to wildlife resources
- Pathogens are part of equation
- Reduced reliance on wildlife resources?
- Cascading effects on a subsistence culture in northern communities?
Wobbling Climate = Complexity

- **Geological scale- (orbital dynamics)**
 - glacial-interglacial
 - Trends in regional geography/ faunal dynamics
- **Millennial scale (orbital/ solar dynamics)**
- **Decadal Oscillations/ Ephemeral Events**
 - Ocean-atmosphere interactions, volcanism
 - ENSO, PDO, NAO (Regime Shifts)
 - Shifting balances in permissive environments
- **Anthropogenic, directional warming**
Orbital Wobbles and Climate Forcing

Ice Ages/ Glacial-Interglacial Cycles- A manifestation of Orbital Wobbling

IPCC AR4 WG1 Chpt 6. (2007)
Quaternary Climate Oscillations, 2.5 MY/ Milankovitch Cycling

- Environmental cooling from late Pliocene
- Filter bridge- Northern intercontinental expansion and exchange
- Glacial-Interglacial episodes define Quaternary history (> 20)
- High amplitude, 100 KY cycles after 1 MYA (sea levels)

LGM 18 KYA
Wobbling Climate Drivers- Cycles Within Cycles/ Ecological Collision

Layered, multifactorial, hierarchical, across evolutionary/ ecological time. Interacting with developmental rates, thresholds, tolerances, resilience.

Time

Cumulative - Long term
- Geological, Millennial, Centennial
- Orbital forcing
- Evolutionary Time

Ephemeral Oscillations - Short term
- Months- Seasonal- Annual- Decadal
- Ocean-Atmosphere
- Anthropogenic
- El Nino, Pacific Decadal, North Atlantic
- Ecological Time/ Regime shifts

Anthropogenic Forcing
- Cumulative “Long term”/ Extreme “Short Term”
- Seasonal, Annual, Decadal, Centennial
- Ecological Time/ Regime Shifts

Tipping Points
- broad geographic scales
- global, continental, regional
- faunal dynamics, assembly
- ecological assemblages
- range expansion/contraction

Shifting Balances
- landscape scales
- permissive environments
- range expansion/contraction
- peripheries of range
- ecological assemblages
- invasion, emerging disease
- feedbacks
Oscillating Climate Drivers

- Ecosystems in episodic collision
- Dynamics of faunal mixing (Mosaics)
 - Opportunity for host switching
- Equivalence of mechanisms/ outcomes
 - Spatial- Continental to Landscape
 - Temporal- Evolutionary to Ecological time
- Establishes historical foundation
Themes for a Northern Fauna

- Dynamic climate variation over time
- Crucible of Ecological Perturbation
- Episodic, cyclical or recurrent processes
 - Waves of faunal expansion / isolation
- Invasions on temporal scales linking evolutionary to ecological time
- Spatial scales from landscapes to regions
- Faunal mosaics in space and time
A Contemporary Framework -

Anthropogenic Climate Drivers - Accelerating Change

- Novel environments/ Invasion
- Changing geographical distribution of environments/ **Habitats in transition**
- Rapid changes in faunal distribution
- Secondary contact zones (recombination)
- Accelerated host switching
 - Introduction of novel pathogens
- Development of Geographic Mosaics
- Ephemereral emergence for disease
Inukshuk
Coppermine River
Nunavut
Modified from - Institut national d’ études Démographiques (2008)

Global Scale “Large & Slow”

Out of Africa - 90K

Industrialization - 250

Exploration - 500

Agriculture - 10K

Global Scale “Small & Rapid”

Convergence of Earth & Human History

-Tipping Points- -Thresholds-
Rates of temperature increase > 2 times global average in past 50 yrs

Northern High Latitude Temperature Anomalies

Tipping Point 1970’s Northern Systems

IPCC AR5 WGI (2013)
Cumulative knowledge from a century of biodiversity exploration
Arctic Parasite Context-

- Viruses, Bacteria, Protozoa, Fungi, Metazoa
- 40-50% of global diversity/ 75% trophic links
- 7100 spp. metazoan parasites in vertebrates?
 - Validate diversity through survey and inventory
 - Diversity of viral and bacterial pathogens?
- Considerable cryptic diversity?
- Absence of long term baselines
- Highly responsive to perturbation
Arctic Parasite Stories-

- Key ecological drivers, shaping ecosystems
- Disease agents, wildlife/ humans (zoonoses)
- Food safety, food security, sustainability
- Historical ecological/ biogeographic indicators
- Indicators of ecological stability and change
 - Conditions on distant flyways/ staging areas
 - Altered Phenology, Mismatches, Trophic shifts
 - Invasions, Faunal Mixing, Emergence
 - Changing Interfaces and Ecotones
Pathogens & Climate Change

- **Long term/ Cumulative “in situ” processes**
 - Responses to trends in warming
 - Decadal and longer
 - Extension of growth season; tolerance, development & generation time; amplification; emerging disease
 - Tipping points for changing dynamics of transmission
 - Latitudinal & altitudinal range shifts
 - Host-switching? Sympathy, “Ecotone” or Border effects
 - Subtle effects- challenge to identify

- **Short-term/ Ephemeral “external” processes**
 - Responses to extreme weather events
 - Temperature anomalies/ humidity
 - Explosive emergence of disease
Outcomes of Climate Warming

- Northern biotic expansion
- Ecosystems in collision/ faunal mixing
- Breakdown in ecological isolation
 - Host switching by parasites at interface newly emerging ecotones (contact zones)
- Shift in permissive environments
 - Altered developmental thresholds
 - Accelerated development/ amplification
 - Extinctions related to resilience
Climate - Water - Pathogens

- Northern expansion over time/ potential for invasion or introduction
- New pathogens/ *Icthyophonus*
- Increasing abundance of pathogens now limited by temperature
- *Vibrio* bacteria distribution
Climate - Water - *Vibrio*

- 50-100 years, shifting distribution
 - 15°C threshold for *Vibrio* development

- Rising sealevel/ temperature
 - Changing precipitation/ runoff, salinity

- *Vibrio* habitat increases 60% in Alaska
 - Naturally occurring pathogen coastal zone
 - Gastroenteritis, septecemia
Human-Climate Intersection

- Increasing population pressure
- Irreversible infrastructure
 - Changing access (e.g., mineral extraction)
 - Permanent road systems
- Eutrophication in rivers/lakes exacerbated by reduced flows
- Impacts on availability aquatic-based foods (fishes, invertebrates)
Jokül Sarlon
Southern Iceland
2004

Future Of Accelerating Perturbation
Things We Know?

- Climate change is accelerating
- Increasing abundance of pathogens
- Climate has direct influence on distribution for pathogens/ diseases
- Host-Species distributions change
- Switching to new hosts drives disease
- Aquatic, Marine, & Terrestrial systems
Things We Need to Know?

- Pathogen diversity
- Distribution - hosts & geography
- Effects on hosts
- Potential for interaction with climate
 - development, thresholds, tipping points,
 - Resilience, tolerances
Things We Don’t Know?

- Challenge to predict dynamic change
- Specific biological parameters
- Detailed data for pathogen distribution
- Unanticipated cascades
- Consequences for perturbation of key vertebrates/invertebrates
Marine
- Anisakis
- Diphyllobothrium
- Trichinella
- Toxoplasma
- Mercury
- PCB’s

Aquatic
- Diphyllobothrium
- Giardia
- Cryptosporidium
- Toxoplasma
- Mercury
- PCB’s

People
- Echinococcus
- Trichinella
- Toxoplasma
- POP’s

Salmon/Ichthyophonus

Caribou/Nematodes, Warbles, Vector-borne disease

Extrinsic
- Ecological Setting
- Perturbation/ Ecotones
- Climate/ Temp & Precipitation
- Extreme Events
- Mitigation/ Adaptation

Intrinsic
- Host Demography
- Condition/ Susceptibility
- Immunology
- Pathogen Life History
- Evolution

Matrix of Forcing Through Accelerating Climate Warming

Dudley, Hoberg et al. EcoHealth 2015
BioDiversity Information?

- Ecosystems in collision
- Environments in Rapid Transition
 - Indicators of loss, introduction, stability?
 - New associations/ emergent disease
- Permanent Record of Faunal Structure?
- Baselines to Assess Stability & Change
 - What is in an environment?
 - What is nearby and can invade?
 - Understanding the players = identification of pathways
- Survey, monitoring & archives
Transboundary Pathways

Landscapes Information Webs

Integrating Specimens - Observations
Ecosystems - Faunas – Species – Populations

Informatics Cross-Disciplinary Synergy
Archives for Biodiversity – Geography - Genetics - Genomics
Baselines, Surveillance, Temporal-Spatial Modeling
Using/Developing Information Linking TEK to Research Networks

Physical Processes Biological Outcomes

Tracking/ Anticipating/ Mitigating
Change Over Space and Time
Climate Change Cascades

Climate change can modify the interface for people & environment. Exposure to pathogens through water-borne & food-borne pathways will be altered. Pathogens & diseases in key mammalian, avian & fish species can influence availability, sustainability & suitability of food resources. Pathogens & emergence of diseases can disrupt structure for aquatic, terrestrial & marine ecosystems.
Climate Change Predictions

Climate change will eliminate ecological barriers & constraints on development & distribution for pathogen transmission. -creates new conditions-
Maps for distributions of hosts, pathogens & diseases will be redrawn.
Emergence of diseases & unanticipated “cascades” can influence terrestrial, aquatic and marine ecosystems.
The Impact of Water and Sanitation Services on Health

Tom Hennessy, MD, MPH
Director
Arctic Investigations Program
National Center for Emerging and Zoonotic Infectious Diseases
US Centers for Disease Control and Prevention (CDC)

Anchorage, Alaska
thennessy@cdc.gov
Goal 6: Ensure access to water and sanitation for all
Is water and sanitation service only a problem of the developing world?
Many Arctic and Subarctic residents don’t have adequate access to in-home running water and sewer.

Russia, Alaska, Canada, Greenland
Percentage of US homes with complete plumbing, 1940 – 2010, US Census
Percentage of US homes with complete plumbing, 1940 – 2010, US Census
Percentage of US homes with complete plumbing, 1940 – 2010, US Census
Sewer Service, Russian Arctic
UN Development Report, 2006

[Map showing the distribution of sewer service in the Russian Arctic with color-coding for different proportions of homes with sewerage.]

Proportion of homes with sewerage (%)
- no data
- < 25
- 25-50
- 51-70
- 71-90
- > 90

Legend:

0 200 400 600 km

Source: Norwegian Polar Institute

(CDC)
In-Home Running Water Service, Survey of Living Conditions in Arctic, 2006

The chart shows the percentage of households with different types of running water service in various regions:

- **Canada**
- **Greenland**
- **Chukotka**
- **Alaska**

The categories are:

- Hot running water
- Cold running water
- Water that is not safe to drink at least sometimes

The chart indicates the prevalence of each service type across different regions.
Main Message #1

• The Sustainable Development Goal for water and sanitation has not been met in the Circumpolar North
 – Alaska, Canada, Greenland, Russia
Arctic Council Water/Sanitation Project

“Improving Health through Safe and Affordable Access to Household Running Water and Sewer in Arctic and Sub-Arctic communities.”

Objectives:

a) Promote innovations in water and sewer technologies and services provision.

b) Document the status of water and sewer service and associated health outcomes.

c) Describe climate-related vulnerabilities and adaptation strategies for community water and sewer systems and source water protection.

 a) Water and sanitation survey, open until Sep 30, 2016

 b) Jonathan Bressler in Climate Change session
Special ESPR issue on Sanitation in Cold Climate Regions

The journal Environmental Science and Pollution Research (ESPR) will be publishing a special issue focusing on Sanitation in Cold Climate Regions.

The special issue will feature both critical reviews and research papers and will include but not be restricted to these topics:

- Waste water
- Solid waste
- Water supply
- Health
- Safety
- Environmental impacts
- Treatment
- Infrastructural issues

The submission deadline for papers has been set as 31st of October 2016. Earlier submissions are encouraged, and papers will be published online as soon as they have been accepted for publication.

Download this document for information on how to submit your contribution to the ESPR special issue on Sanitation in Cold Climate Regions.

For further information about this special issue, please read this invitation letter or contact Associate Professor Pernille Erland Jensen.
Hierarchy of Water Requirements

- Drinking
- Cooking
- Personal hygiene
- Washing clothing
- Cleaning home
Factors Linking Water to Health

• **Water Quality**
 - Prevents illness from drinking water
 - Water-borne diseases
 - Cholera, Typhoid fever, dysentery

• **Adequate water Quantity**
 - Drink, cook, wash: hands, body, clothes
 - Prevents infections spread person-to-person
 - Water-washed diseases
 - Trachoma, respiratory infections, skin infections
The Infectious Disease Triangle

Person

Pathogen Environment
The Infectious Disease Triangle

Person

Pathogen
Antibiotic resistance

Environment
Household crowding

Immune system failure
Smoker
The Infectious Disease Triangle

Person

Pathogen

Environment

Water Quality

Water Quantity
Hospitalization Rates for “High” and “Low” Water Service Regions, Alaska, 2000-2004

Hennessy, AJPH, 2008

*p < 0.05
Hospitalization Rates for “High” and “Low” Water Service Regions, Alaska, 2000-2004

- Diarrhea
- Pneumonia
- Resp Syncytial Virus
- Skin Infections
- Methicillin R S. aureus

Water-borne infections
Water-washed infections

Rate per 10,000
Main Message #2

- For health, water **quantity** is as important as water **quality**.
Hospitalization rates for Alaska Native infants, according to percent of homes with water service 1999 - 2004*

* Hennessy, AJPH, 2008
Serious Infections with Pneumococcus in Children < 5 years old, Southwest Alaska, 2001-2007

* Wenger, 2010, Pediatric Infectious Diseases
How water helps to prevent Respiratory Infections

- Transmitted by
 - Cough/sneeze droplets
 - Contaminated hands or surfaces

- Transmission prevented by
 - Hand washing, surface cleaning

- Other factors play a role
 - Crowding, vaccinations, cough/sneeze hygiene, breastfeeding
Skin infection rates, all ages, by village water service, Southwest Alaska, 1999 - 2000
How water helps to prevent Skin Infections (Boils and Impetigo)

– Spread by
 • Person to person contact
 • Self inoculation
 • Contaminated surfaces or objects (laundry, sauna benches)

– Spread prevented by
 • Hand and body hygiene
 • Cleaning home environment and saunas
 • Laundry (bleach, hot water)

– Other factors
 • Crowding, long lasting colonization of skin,
 • Antibiotic use
Number of Cavities in Primary Teeth by Village Water Fluoridation Status, Alaska

Mean number of dental caries

* p < 0.01

MMWR, Sept 2011
How water helps to prevent Dental Cavities

– Caused by excess *Strep. mutans* bacteria
 • Produces acid and destroys tooth enamel

– Prevented through
 • Water for brushing teeth
 • Fluoridated water
 – only available in piped distribution systems
 • Good tasting water may decrease soda drinking

– Other factors
 • Dietary sugar, use of toothpaste, strength of tooth enamel, access to dental care
Clinic visits for Water-related Infections
Before and After Installation of Running Water, 4 villages in southwest Alaska, 2007 -2013

Rate of Visits to Clinic, per person per year

- Gastrointestinal: 38% decrease
- Respiratory: 16% decrease
- Skin: 20% decrease

Clinic visits for Water-related Infections
Before and After Installation of Running Water,
4 villages in southwest Alaska, 2007 -2013
How water helps to prevent Gastroenteritis (Diarrhea)

- Germs spread through
 - Contaminated water or food
 - Person to person
- Transmission prevented through
 - Providing and protecting drinking water
 - Cleaning food preparation surfaces, utensils, dishes
 - Hand hygiene
- Other factors
 - Contaminated food, cooking temperatures, cross-contamination, storage of foods
Main Message #3

• The health benefits of running water includes prevention of:
 – Respiratory infections
 – Skin infections
 – Dental cavities, and
 – Diarrhea
How much disease can we prevent by adequate water service?
How much disease can we prevent by adequate water service?

- Karachi, Pakistan
 - 606 households
 - Randomized trial of soap and handwashing promotion efforts
 - 50% drop in pneumonia, diarrhea, impetigo

How much disease can we prevent by adequate water service?

• Karachi, Pakistan
 – 606 households
 – Randomized trial of soap and handwashing promotion efforts
 – 50% drop in pneumonia, diarrhea, impetigo
 • Luby, et al. *Lancet* 2005

• Rural Alaska villages
 – Compare rates
 • Served vs. unserved villages
 • Before and after water service
Respiratory Hospitalizations in Children

- Lower Resp. Tract Infection
- Pneumonia
- Resp. Syncytial Virus

* Hennessy, AJPH, 2008
Serious infections with *Streptococcus pneumoniae* in children

![Graph showing the rate of infections per 100,000 for different water service percentages:
- < 10%
- 10 - 79%
- >= 80%
- US, overall.]

* J Wenger, 2010, Pediatric Infectious Diseases
Skin infections, All Ages

- Staphylococcus aureus
- Methicillin-resistant S. aureus
- Hospitalized

Rate per 1,000 persons

Water Service:
- < 10%
- 10 - 79%
- >= 80%
- Town

- 50%
Clinic visits for Water-related Infections
Before and After Installation of Running Water,
4 villages in southwest Alaska, 2007 - 2013

Rate of Visits to Clinic, per person per year

Gastrointestinal

Respiratory

Skin

Before

After

Clinic visits for Water-related Infections
Before and After Installation of Running Water,
4 villages in southwest Alaska, 2007 - 2013

Rate of Visits to Clinic, per person per year

Gastrointestinal

Respiratory

Skin

Before

After

Clinic visits for Water-related Infections
Before and After Installation of Running Water,
4 villages in southwest Alaska, 2007 - 2013

Rate of Visits to Clinic, per person per year

Gastrointestinal

Respiratory

Skin

Before

After

Clinic visits for Water-related Infections
Before and After Installation of Running Water,
4 villages in southwest Alaska, 2007 - 2013

Rate of Visits to Clinic, per person per year

Gastrointestinal

Respiratory

Skin

Before

After

Clinic visits for Water-related Infections
Before and After Installation of Running Water,
4 villages in southwest Alaska, 2007 - 2013

Rate of Visits to Clinic, per person per year

Gastrointestinal

Respiratory

Skin

Before

After

Clinic visits for Water-related Infections
Before and After Installation of Running Water,
4 villages in southwest Alaska, 2007 - 2013

Rate of Visits to Clinic, per person per year

Gastrointestinal

Respiratory

Skin

Before

After

Clinic visits for Water-related Infections
Before and After Installation of Running Water,
4 villages in southwest Alaska, 2007 - 2013

Rate of Visits to Clinic, per person per year

Gastrointestinal

Respiratory

Skin

Before

After

Clinic visits for Water-related Infections
Before and After Installation of Running Water,
4 villages in southwest Alaska, 2007 - 2013

Rate of Visits to Clinic, per person per year

Gastrointestinal

Respiratory

Skin

Before

After

Clinic visits for Water-related Infections
Before and After Installation of Running Water,
4 villages in southwest Alaska, 2007 - 2013

Rate of Visits to Clinic, per person per year

Gastrointestinal

Respiratory

Skin

Before

After
Main Message #4

• We can prevent a lot of illness and suffering by providing adequate water and sanitation.
 – 35% to 50% fewer infections
How much water is enough to improve health?
Domestic Water Quantity, Service Level and Health

Authors:
Guy Howard
Programme Manager, Water Engineering and Development Centre, Loughborough University, UK
Jamie Bartram
Co-ordinator, Water, Sanitation and Health Programme, World Health Organization, Geneva, Switzerland

http://cdrwww.who.int/water_sanitation_health/diseases/WSH03.02.pdf
<table>
<thead>
<tr>
<th>Service level</th>
<th>Access measure</th>
<th>Needs met</th>
<th>Level of health concern</th>
</tr>
</thead>
<tbody>
<tr>
<td>No access (quantity collected often below 5 l/c/d)</td>
<td>More than 1000m or 30 minutes total collection time</td>
<td>Consumption – cannot be assured Hygiene – not possible (unless practised at source)</td>
<td>Very high</td>
</tr>
<tr>
<td>Basic access (average quantity unlikely to exceed 20 l/c/d)</td>
<td>Between 100 and 1000m or 5 to 30 minutes total collection time</td>
<td>Consumption – should be assured Hygiene – handwashing and basic food hygiene possible; laundry/bathing difficult to assure unless carried out at source</td>
<td>High</td>
</tr>
<tr>
<td>Intermediate access (average quantity about 50 l/c/d)</td>
<td>Water delivered through one tap on-plot (or within 100m or 5 minutes total collection time)</td>
<td>Consumption – assured Hygiene – all basic personal and food hygiene assured; laundry and bathing should also be assured</td>
<td>Low</td>
</tr>
<tr>
<td>Optimal access (average quantity 100 l/c/d and above)</td>
<td>Water supplied through multiple taps continuously</td>
<td>Consumption – all needs met Hygiene – all needs should be met</td>
<td>Very low</td>
</tr>
</tbody>
</table>
Is 50 Liters or 13 gallons per person per day needed to protect health?

- Could we conserve water?
 - Low-flow faucets
 - Water recycling
 - Separating or dry toilets

- Is all water needed in home?
 - Community facility for
 - Laundry, shower / bathing, sauna
 - Home: drinking, toilet, cooking, handwashing, home cleaning
Handwashing Basin in Alaska Home
What is the “Return on Investment” for Providing Water and Sewer Service?
What is the Return on Investment for Water/sewer services?

- Direct health costs
 - Use rate differences to calculate costs of
 - Excess hospitalizations, clinic visits
 - Quality of Life measures
 - Quality Adjusted Life Years
Return on Investment, continued

• Indirect costs
 – Being ill or caring for an ill family member
 • Missed work – loss of income or job
 • Missed school – lower educational success
 • Less subsistence or cultural activity
 – Hauling water and waste
 • Opportunity cost of time
 • Reduced tourism or business opportunities
 – Water insecurity
 • Stress, mental health effects
The Human Cost

• A child born in November, returns to a village that has no running water...

• A child lives in a village with no running water, or where water has an unpleasant taste...
Main Message #5

• Water and sewer service is a fundamental issue of health and social justice.

• The costs connected with lack of service are mostly unmeasured.

• These costs are being paid by the people living in communities without water service and also by the rest of society.
Healthy Alaskans 2020 (HA2020)

- Public health initiative to improve health and ensure health equity
- 25 health priorities
 - Measureable targets to reach by 2020
 - Provides strategies and specific actions
 - Identifies key partners across the state to engage in the work
HA2020 Dashboard

Increase the proportion of Alaskans with access to in-home water and wastewater services

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Progress</th>
<th>Baseline (2010)</th>
<th>HA 2020 Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>19: Percentage of rural community housing units with water and sewer services</td>
<td>[Stop symbol]</td>
<td>78%</td>
<td>87%</td>
</tr>
</tbody>
</table>
Healthy Alaskans 2020: Rural Sanitation Target

Percentage of rural community housing units with water and sewer service
Thank you!
Pathogen risk management considerations for safe household water uses

Nicholas ASHBOLT
(Ashbolt@UAlberta.ca)

AI-HS Translational Health Chair in Water

Points to be addressed

• Remote & Arctic community water services (not central water & sewage):
 – Need for decentralized (household) services
 • Given the pathogen pathways of concern
 – One-Health concept, climate adaptive
 – Management of microbial issues within a waterscape-system’s framework
Our common goals - Larry Hartig

- Critical to address **human health**, but also
- Climate change (threatening all systems)
- Engineering issues (fit-for-purpose)
- Operational needs (training/maintenance) &
- **Regulations** (how, what, why); and

How to integrate within waterscape narrative
Sustainable water services selection

- Stakeholder-driven, so ‘pulled’ by citizens
- Meeting core sustainability principals
 - Resource recovery ecologically-based
 - Adaptable, & based on risk assessments

Water Services Association of Australia 2008 Framework
Sustainable systems achieved by trade-offs between key criteria with stakeholders

To meet the intent of regulations i.e. systems may not meet current prescriptive regulations

5 Primary Criteria

- Economic
- Technical
- Hygiene
- Social
- Environ
‘Honey’ buckets, Atmautluak

http://watersewerchallenge.alaska.gov/photogallery.html
Covered Wastewater Haul & dump!

http://watersewerchallenge.alaska.gov/photogallery.html

Even this ‘preferred’ sewage management has major chemical, pathogen & antimicrobial resistant gene impacts
Antimicrobial Resistance (AMR) via water

- 3rd gen cephalosporin-resistant E. coli & MRSA estimated deaths 3.3 per 100,000 in EU in 2015
- Globally 700,000 AMR-deaths, likely 10 million by 2050*
- Unclear fraction due to water food exposure pathways**

**Ashbolt et al. (2013) Env Health Pers 121, 993-1001
Water needs for Arctic health

- Residents may use 1 to 5 gallons per capita per day for all current household uses (drinking, cooking, washing)
 - significantly below recommended by Institute of Medicine / WHO for water-wash disease control (~13 gal/person.d)*
- But supplying more water to homes may not be the answer nor do washeterias necessarily help consumers’ health
 - Because it is costly, generates more wastewater pollution and communal facilities increase respiratory disease transmission (the largest water-related health concern)

*Howard & Bartram (2003). Domestic Water Quantity, Service, Level and Health; WHO/SDE/WSH/03.02
Climate change: loss of permafrost

- Resulting in serious erosion, flooding, and destruction of homes, buildings, and roads from differential settlement, slumping, and/or collapse of underlying base sediments

- Loss of clean lake water for drinking and hygiene, saltwater intrusion, and sewage contamination that could cause respiratory, gastrointestinal and skin infections

Need more adaptive infrastructure, not just resilient
- i.e. most infrastructure only within homes
Lasting change requires trust

What customers need

What the service must offer

How customers want to feel

How we must deliver it

Support me
Understand me
Educate me
Make it easy for me

Value me
Keep me informed
Be reliable
Be fair With me

Trust

Value me
Keep me informed
Be reliable
Be fair With me
Understanding water health issues

• Community diseases result from:
 – Inadequate water and sanitation
 • waterborne & water-based pathogens
 – Lack of body and clothes washing
 • skin infections (primarily bacterial and fungal)
 – Respiratory infections
 • person-to-person in group settings + water-based
 • such as reduced with Kivalina washeteria closures ¹

• Solutions must address aboriginal societal needs ²

*Thomas et al. (2016) Impact of In-home Water Service on the Rates of Infectious Diseases, WIHAH
¹Thomas et al. (2013) Int J Circumpolar Health 72: 480-483

4 village study* rates Pre & Post intervention
GI illnesses 2% & down 38%
skin illnesses 17% & down 20%
Resp’y illnesses 83% & down 16%
U.S. reported cases of Legionnaires’ disease have increased nearly 300% since 2000.

In-building water issue via aerosols e.g. showers
Circumpolar-relevant water pathogens

• **Enteric** waterborne (human & zoonotic) diseases
 – *Giardia* giardiasis, enteritis *Yersinia* & *Campylobacter* spp.
 – *Echinococcus multilocularis* (lung disease) via foxes/voles

• **Water-based** (saprozoic) diseases
 – Non-tuberculous mycobacteria (wound/lung), *Helicobacter pylori*?
 – *V. parahemolyticus/vulnificus* gastro via seafood if seawater > 15 °C

• **Person-to-person** spread & **Water-Washed** infections:
 – *Norovirus, Cryptosporidium, Staph aureus, P. aeruginosa* & helminths
 – TB, *Strep. pneumoniae, Haemophilus influenzae* along with various multi-drug resistant bacterial and fungal pathogens
Waterborne sequelae – poorly understood

• **Auto-immune diseases**
 - Diabetes, Heart disease, Liver damage, & Reactive arthritis (enteric viruses, campylobacters)

• **Carcinogens**
 - *Helicobacter pylori*, cyanotoxins

• **Renal disease**

• **Nervous system disorders**
 - *Campylobacter jejuni*, various *Enterovirus* spp.

• **Heart and liver disease**
 - Adenovirus, Coxsackievirus, cyanotoxins

Cyanobacteria that produce cyanotoxins
Managing pathogens via a one-health approach, 2 examples:

• Containment of sewage/stormwater runoff to native animals: for *Toxoplasma gondii*, *Giardia*, *Echinococcus*, etc. yet
 – Antimicrobial resistance (AMR) genes/bacteria & CEC not adequately controlled by sewage treatment and disinfection

• Antimicrobial treatment for *Helicobacter pylori* infection: 58% people positive to below 9% by treatment (Aklavik NWT study) \(^1\) however.

One Health approach include interactions between and among humans, animals, plants, parasites, microbes, and chemical contaminants in terrestrial, aquatic, & marine ecosystems

\(^1\)Carraher *et al*. (2013) *Int J Circumpolar Health* 72:21594
Helicobacter pylori, ulcer & cancer bug, is it waterborne?

- CDC estimate 2/3 of all humans harbor *H. pylori*
 - < 20% in developed regions, e.g. generally in USA
 - 50-80% in Indigenous Peoples of Arctic regions

- Most infections do not cause illness, but
 - Major risk factor for peptic ulcer disease
 - 1994 *H. pylori* classified as a **carcinogen** (mucosa-associated lymphoid tissue [MALT] lymphoma)
 - But also reduces risk of esophageal adenocarcinoma
Many inflammatory disorders are influenced by alterations in the crosstalk between innate immunity and our microbiome.

These include metabolic (red boxes), neoplastic (orange box) and autoimmune or autoinflammatory (blue boxes) disorders.

So not necessarily good to treat all *Helicobacter pylori* cases

• Based on an international experts’ review of evidenced-based benefits and harms for screening & treatment of *H. pylori* in high-prevalence countries
 – In Arctic countries where *H. pylori* prevalence exceeds 60%, treating *H. pylori* infection should be limited to peptic ulcer disease and mucosa-associated lymphoid tissue lymphoma and
 – test-and-treat strategy may not be beneficial for those with dyspepsia*

McMahon et al. (2015) Epi Inf 144: 225-233
Waterborne *H. pylori*?

- Contaminated water plays a key role
- *H. pylori* survives in a viable but non-culturable (VBNC) state in water
 - Traditional culture does not estimate presence
- Rafik Dey in my group has demonstrated intracellular growth within free-living amoebae
 - Hence detect infectious VBNC forms & natural site for growth within biofilms (of chlorinated drinking water)

WHO Risk-based water safety plans

Basis of regulations now in Alberta, Canada

Risk Management (water safety plan) → Assess exposures → Risk Assessment (microbial risk assessment) → Public Health Status → Health Targets → Tolerable Risk

Pathogen control starts with a toilet

Vacuum toilet components

Loowatt-toilet
(http://loowatt.com)
Flush water needs
0 – 1 pint - 0.26 gallons

Air-water forced toilet
Blackwater energy recovery: socio-economic driver for alternative systems

- **Household-scale**
 - Possible, but community energy & nutrient recovery better

- **Community-scale**
 - Full-cost recovery & net energy generation
 - Also provides local economy with jobs

Blackwater sewer (daily pulsed flow, not heated?)

Risk-defined treatment requirements

Virus, bacteria & parasite levels for safe uses.

Drives regulations then surrogates to demonstrate pathogen reductions at control points are met.
• Criteria based on quantitative microbial risk assessment of surface drinking waters

<table>
<thead>
<tr>
<th>Performance classification</th>
<th>Bacteria (log₁₀ reduction required)</th>
<th>Viruses (log₁₀ reduction required)</th>
<th>Protozoa (log₁₀ reduction required)</th>
<th>Interpretation (assuming correct and consistent use)</th>
</tr>
</thead>
<tbody>
<tr>
<td>★★★</td>
<td>≥ 4</td>
<td>≥ 5</td>
<td>≥ 4</td>
<td>Comprehensive protection (very high pathogen removal)</td>
</tr>
<tr>
<td>★★</td>
<td>≥ 2</td>
<td>≥ 3</td>
<td>≥ 2</td>
<td>Comprehensive protection (high pathogen removal)</td>
</tr>
<tr>
<td>★</td>
<td>Meets at least 2-star (★★) criteria for two classes of pathogens</td>
<td></td>
<td></td>
<td>Targeted protection</td>
</tr>
<tr>
<td>−</td>
<td>Fails to meet WHO performance criteria</td>
<td></td>
<td></td>
<td>Little or no protection</td>
</tr>
</tbody>
</table>

http://apps.who.int/iris/bitstream/10665/204284/1/9789241509947_eng.pdf
Pathogen log reduction targets for non-potable household uses

<table>
<thead>
<tr>
<th>Water Source</th>
<th>Use</th>
<th>Pathogen log$_{10}$ reduction target to meet < 1 infection / 10,000.y</th>
<th>How?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Viruses</td>
<td>Bacteria</td>
</tr>
<tr>
<td>Roof</td>
<td>Drinking</td>
<td>?</td>
<td>3.5</td>
</tr>
<tr>
<td>Roof</td>
<td>Washing</td>
<td>?</td>
<td>3.5</td>
</tr>
<tr>
<td>Snow-melt</td>
<td>Drinking</td>
<td>4.0</td>
<td>3.5</td>
</tr>
<tr>
<td>Snow-melt</td>
<td>Clothes washing</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Shower/clothes</td>
<td>Showering</td>
<td>7.0</td>
<td>4.5</td>
</tr>
<tr>
<td>Shower/clothes</td>
<td>Clothes washing</td>
<td>6.0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Bacterial genera in laundry greywater – identifying surrogate

Microbial group in greywater

Zimmerman et al. (2014) Env Sci Tech 48: 7993-8002
Alternative systems: suitable for Arctic?

Different financial model & political will for:

- Alternative systems: suitable for Arctic?
- Rain Water Top up water supply
- Raw household water for clothes & body washing
- Greywater/treatment (48 gpd) 4-7 LRT by unsaturated filter, UV, or Cl₂
- Electrochemically Home DW MF/UV 3-4 LRT 10 gpd

Model & political will for:

- Within home treatment of drinking water and re-circulated shower and clothes greywater & separate blackwater loops
- Fit-for-purpose, QMRA modeled water safety plan
Key take home points

• ‘Traditional’ centralized water services should not be our aspirational goal for most small Arctic communities (nor elsewhere)
 – Need a systems’ & community view to identify alternatives
 – Including energy, heat, fertilizers + water fit-for-purpose
 – Manage system within a proactive water safety plan
 – Demonstration at scale (e.g. Alaskan water/san challenge) to identify sustainable/adaptable water service options
Reuse Regulations and Challenges of Regulating On-site Systems
There is not a National Regulation for Water Reuse

- In the gap between CWA and SDWA
- All water is recycled
 - De facto
 - Intentional
- Regulations tend to be for centralized systems

Graphic credit: www.healthywaterways.org
What is Water Reuse?

Non-Potable Reuse (NPR) or “Direct Reuse” (Purple Pipe)

“De Facto” Potable Reuse
What is Water Reuse?

Non-Potable Reuse (NPR) or “Direct Reuse” (Purple Pipe)

Indirect Potable Reuse - Surface Water Augmentation

Indirect Potable Reuse - Groundwater Recharge

Direct Potable Reuse
“Reuse” is Starting to Mean New Things Too…

- Stormwater Reuse
- On-site, Decentralized Reuse
 - Neighborhood
 - Multi-Story
 - Campus
 - Household
- Commercial & Industrial Reuse
 - Using reclaimed water
 - On-site recycling
However, most reuse regulations focus on use of domestic wastewater as a source of supply.
Reuse Regulations Driven by Local Water Rights and Water Quality Rules

- Prior Appropriation
- Riparian Rights
- Case Law
- Management of Aquifers (Quality & Quantity)
- Potable Reuse Regulations Based on SDWA Risks
 - No greater than 1 per 10,000 persons exposed annually
 - 70 kg person drinking 2 liters/day
Drivers Toward Decentralized Water Management

- Operational Technology and Information
- Automation and Computing Capacity
- Locally Available and Controllable
- Holistic Pollution Prevention
Impediments to Decentralized Water Management
Decentralized Reuse is Gaining Ground Nationwide

- Greywater Ordinances
- Non-Potable Water Ordinances (SFPUC)
- NSF 350 and 350-1: Onsite Residential and Commercial Reuse Systems
- But, no Greywater to Potable Water
- Biggest challenge for potable is assurance of water quality
Status of Greywater Regulations

Table 4.1. State Analysis of Graywater/Wastewater Regulations

<table>
<thead>
<tr>
<th>States allowing wastewater reclamation that define graywater as wastewater (4.1.1)</th>
<th>States not defining graywater (4.1.2.1)</th>
<th>States treating graywater as septic (4.1.2.2)</th>
<th>States permitting graywater using a tiered approach (4.2.1)</th>
<th>States regulating graywater reuse without a tiered approach (4.2.2)</th>
<th>States allowing residential irrigation only (4.2.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>Illinois</td>
<td>Connecticut</td>
<td>Arizona</td>
<td>Florida</td>
<td>Hawaii</td>
</tr>
<tr>
<td>Alaska</td>
<td>Kansas</td>
<td>Kentucky</td>
<td>California</td>
<td>Georgia</td>
<td>Idaho</td>
</tr>
<tr>
<td>Arkansas</td>
<td>North Dakota</td>
<td>Maryland</td>
<td>New Mexico</td>
<td>Montana</td>
<td>Maine</td>
</tr>
<tr>
<td>Colorado</td>
<td>Ohio</td>
<td>Michigan</td>
<td>Oregon</td>
<td>Massachusetts</td>
<td>Nevada</td>
</tr>
<tr>
<td>Delaware</td>
<td>South Carolina</td>
<td>Minnesota</td>
<td>Washington</td>
<td>North Carolina</td>
<td></td>
</tr>
<tr>
<td>Indiana</td>
<td>Tennessee</td>
<td>Nebraska</td>
<td>South Dakota</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iowa</td>
<td></td>
<td>New Hampshire</td>
<td>Texas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Louisiana</td>
<td>New Jersey</td>
<td></td>
<td>Utah</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mississippi</td>
<td>New York</td>
<td></td>
<td>Virginia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missouri</td>
<td>West Virginia</td>
<td></td>
<td>Wisconsin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oklahoma</td>
<td></td>
<td></td>
<td>Wyoming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pennsylvania</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhode Island</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermont</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SFPUC Non-Potable Water Ordinance

- Developed in context of watershed management
- On-site vs. centralized capacity
- Integrated across departments
- Supported by Guidance Manual
- Clear, concise on-line information
- Mandated implementation for all buildings 250,000 square feet and larger
Build Water Resilience

Buildings, including commercial, mixed-use, and multi-family residential buildings, generate several types of alternate water sources. In San Francisco, alternate water sources that are treated to meet SFDPH approved water quality standards can be used for a variety of non-potable uses within and outside a building. Rainwater, stormwater, graywater, blackwater, and foundation drainage are the most common types of alternate water sources collected and treated by buildings in San Francisco.

Green building initiatives, like LEED® and 2030 Districts®, often encourage onsite water systems as a sustainable water management tool. As green building strategies and practices progress in San Francisco, more onsite water systems will be incorporated within buildings and districts throughout the City.

Nuisance groundwater that is extracted to maintain the structural integrity of a building and would otherwise be discharged to the City’s sewer system (a.k.a., dewatering or sump water).
SFPUC Non-Potable Water Ordinance

• Sources cannot include dishwasher or kitchen sinks.
• None of recycled water would come into direct contact with people
 • Toilet & urinal flushing
 • Landscape irrigation
• Can’t be used for washing food or clothing
• Doesn’t do rural Alaska much good.
NSF/ANSI 350 Only Goes So Far

- Very onerous process to get certified
- Sources cannot include dishwashers or kitchen sinks
- Limited on-site uses
 - Urinal & toilet flushing
 - Landscape irrigation
- Doesn’t do rural Alaska much good
Why don’t we just do what NASA does, and drink our own recycled urine?
So what principles can we apply for on-site systems in rural Alaska?

- Exposure risk assessments
 - Centralized systems: cancer and gastrointestinal pathogens
 - Decentralized systems: Same, but also skin maladies
- Low complexity / loosely coupled systems
- Risk mitigation
 - Redundant treatment
 - Real time monitoring
 - Storage & re-processing of off-spec water
 - Homeowner basic training & best practices
 - System testing program (like backflow prevention)
Thank you!

Guy Carpenter
President, WateReuse Association
Senior VP, Strategic Operations
carpenter@aqua-ecture.net
424-832-7017
Water Security in the Arctic
Perspectives from the Model Arctic Council

University of Alaska Fairbanks | March 2016
MAC Objectives

➔ develop students’ knowledge of the Arctic as a region, of circumpolar politics, and of northern Indigenous peoples

➔ increase students’ understanding of Arctic Council objectives and processes

➔ prepare students to assume leadership roles in the circumpolar north

➔ enhance student and faculty collaboration among UArctic institutions.
Denah O’tanah! We are the people of the land.

non Indigenous person to act in the place of an Indigenous organization

Greater understanding of positionality and place = positive experiential learning.
Sharon Hildebrand
MAC Role: U.S. Representative

http://youtu.be/rb3yliN0Wz0
Carolyn Kozak
MAC Role: U.S. Representative

Over 5,000 Alaskans Unserved

Complex Challenges

Fail Attempts

Value of Simulation
FAIRBANKS DECLARATION (excerpt)

Affirm three central themes for the Improving Health Through Safe and Affordable Access to Household Running Water and Sewer (WASH) project: social justice, economic sustainability, and environmental protection,

Confirm a report on climate change vulnerabilities and adaptation strategies is needed pertaining to Arctic community water and sewer systems, including source water protection, to be presented to the Arctic Council following the September 2016 Sustainable Development Working Group meeting,

Confirm participation by the Member States and permanent participants at the Water Innovations for Healthy Arctic Homes (WIHAH) conference in Anchorage, Alaska, September 18-21 2016, Reaffirm the need to establish metrics and best practices for monitoring implementation, led by the Arctic Council Permanent Participants,

Reaffirm the need to establish metrics and best practices for monitoring implementation, led by the Arctic Council Permanent Participants
LEARNINGS FROM MAC

The effects of climate change are felt more acutely by those who are the most remote.

Time for research and time for action

We are stronger when we SHARE

THE ARCTIC IS WHERE TEK COMES CLOSEST TO THE WESTERN SCIENTIFIC PARADIGM

CONSENSUS IS TOUGH PILL TO SWALLOW BUT IT DOES LEAD TO PROGRESS
EMPOWERMENT FROM MAC

AMAZING NEW COHORT TO CARRY THE MESSAGE OF THE ARCTIC TO THE SOUTH

Taking action on matters of importance to Arctic communities
Questions

Sharon Hildebrand
Carolyn Kozak
Stephen Penner

Masee’ – Thank you
Household Water Treatment and Safe Storage: Experience from the Developing World Lessons for Rural Alaska?

Rob Quick, MD, MPH
CDC
Growth of Water Purification and Decline in Typhoid Fever Deaths, United States Cities 1900-1913

Adapted from: Johnson GA. The typhoid toll. Journal of the American Water Works Association 1916; 3: 249-326
Health and Access to Safe Water in the Developing World

- Over 500,000 diarrhea deaths per year
- Over 660 million people lack access to “improved water supplies”
- At least 1.8 billion lack access to safe water
- “Improved” water supplies are not necessarily safe
Household Connections Are Not Necessarily Safe

- Irregular treatment
- Inadequate maintenance
- Clandestine connections
- Power outages
Community Water Supplies Are Not Necessarily Safe

• Contamination of ground water
• Recontamination of clean water through transport and storage
Barriers of Time and Effort: Daily Burdens

- Obtain food
- Collect water
- Buy or collect fuel
- Build fire
- Cook
- Care for children
- Wash clothes
- Clean house
- Care for livestock
- Tend garden crops
- Engage in economic activities
Barriers of Money: Daily Expenses

- Food
- Cooking supplies
- Water
- Fuel
- Cleaning supplies
- Seeds, fertilizer
- Transportation
- Clothing
- Medicine/health care
- School supplies
- Durable goods
The Water People Want

- In the home
- Clean
- 24/7
The Challenge of Providing Water Infrastructure

- Huge expense (China: $125 billion over 10 years)
- Time consuming
- Requires political stability/good governance
- Compromised distribution systems
- Maintenance/repair challenges
- The population at greatest need earns less than $2 per day
- Inadequate systems to collect money from population in need
A Short to Medium Term Alternative: Household Water Treatment and Safe Storage (HWTS)
Household Water Treatment and Safe Storage

Water treatment with dilute sodium hypochlorite

Safe water storage

Behavior change methods: social marketing and community mobilization
Evidence Base

• Improve water quality in the laboratory
• Improve water quality in field settings*
• Prevent disease
 – 2006 Cochrane review**
 • Review of 33 reports
 • HWTS interventions reduce diarrhea risk by >30%
• Improve water quality and prevent disease at scale in a “real world” setting

**Clasen T, et al. BMJ 2007; doi:10.1136/bmj.39118.489931.BE
HWTS Field Trials

Reduces diarrhea risk by 25-85%

<table>
<thead>
<tr>
<th>Country</th>
<th>Year</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolivia</td>
<td>1994</td>
<td>44% overall; 53% in infants</td>
</tr>
<tr>
<td>Uzbekistan</td>
<td>1996</td>
<td>85% overall</td>
</tr>
<tr>
<td>Zambia</td>
<td>1998</td>
<td>48% overall</td>
</tr>
<tr>
<td>Guatemala</td>
<td>2001</td>
<td>25% overall</td>
</tr>
<tr>
<td>Madagascar</td>
<td>2001</td>
<td>90% against cholera</td>
</tr>
<tr>
<td>Kenya</td>
<td>2001</td>
<td>55% in children <5 years old</td>
</tr>
<tr>
<td>Madagascar</td>
<td>2002</td>
<td>63% overall</td>
</tr>
<tr>
<td>Pakistan</td>
<td>2002</td>
<td>73% overall</td>
</tr>
<tr>
<td>Uganda</td>
<td>2003</td>
<td>25% in HIV-infected persons</td>
</tr>
</tbody>
</table>

*publication available
Proven Technologies: Chemicals

- Chlorine solution
- Flocculent-disinfectant
- Aquatabs
- Chlorine dispensers
Proven Technologies: Filters

- Biosand
- LifeStraw Family
- Silver impregnated ceramic pot, situated in nested buckets with a tap
Proven Technologies: UV Light
Unproven Technologies Abound

- Unproven technology = insufficient evidence for effectiveness and feasibility
- Many examples of unproven technologies
 - Chemical (AgNO2, halogen beads)
 - Filters (hollow fiber)
 - Community systems (reverse osmosis)
- Innovation is necessary and good, but testing is essential
Estimated Scale of HWTS

- Based on JMP surveys from 67 countries (1.1 billion people)*
- Reported HWTS use by 33% (18% in Africa)
 - Boiling: 21% (4.5% in Africa)
 - Chlorine: 6%
 - Filtration: 4%
 - Solar disinfection: 0.2%
- Direct observation
 - E. coli detection in water reported to be boiled: 40-60%
 - Chlorine residual detection in water reported to be chlorinated: 5-30%

Why Don’t People Treat Their Water?

- **Hardware (ie, technology) problems**
 - Poor match with population
 - Performance problems
 - Inadequate attention to maintenance and repair
 - Short lifespan

- **Software problems**
 - Insufficient training of implementers and target populations
 - Inadequate attention to behavior change process
Why Don’t People Treat Their Water?

• **Barriers**
 – Cost
 – Lack of time
 – Inconvenient
 – Taste/smell issues
 – Too complicated

• **Low demand**
 – Lack of awareness of need for treatment
 – Belief that water doesn’t need treatment
 – Ingrained practices/habits
Why Do People Adopt Interventions? Lessons from Diffusion Research

• Relative advantage
• Compatibility
• Triability or testability
• Potential for reinvention
• Observed effects

Rodgers, *Diffusion of Innovations*
Social Entrepreneurs/
Community Health Promoters
HWTS Integration in Schools
HWTS Integration in Health Facilities
HWTS Integration with Antenatal Services
“Consumer” Choice: An Evaluation of Technology Preferences

- Location: rural western Kenya
- Population: random sample of 400 households
- Technologies:
 - “WaterGuard” chlorine solution + improved container
 - “PUR” flocculent-disinfectant sachets, 2 buckets, cloth
 - Silver-impregnated ceramic pot
Study Design

• Baseline survey
 – Technology preferences

• Randomized into 3 groups
 – Each group randomly assigned one of 3 technologies
 – Used technology for 2 months
 – Technologies switched every two months
 – Each group each of 3 technologies x 2 months
 – Water quality tested for each technology in each household

• End of study: each participant chose technology they preferred
Outcomes Measured for Each Technology

- Reported use
- Microbiological performance
- Reported technology preferences
 - Baseline
 - End of study
- Technologies chosen by participants at end of study
Technology Use

<table>
<thead>
<tr>
<th>Technology</th>
<th>Reported use</th>
</tr>
</thead>
<tbody>
<tr>
<td>WaterGuard</td>
<td>76%</td>
</tr>
<tr>
<td>PUR*</td>
<td>62%</td>
</tr>
<tr>
<td>Ceramic pot</td>
<td>73%</td>
</tr>
</tbody>
</table>

*p<0.05 compared to WaterGuard
Technology Performance: Undetectable E. coli in Treated Water

<table>
<thead>
<tr>
<th>Technology</th>
<th>Improved water supply</th>
<th>Unimproved water supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>WaterGuard</td>
<td>53%</td>
<td>66%</td>
</tr>
<tr>
<td>PUR*</td>
<td>34%</td>
<td>54%</td>
</tr>
<tr>
<td>Ceramic pot*</td>
<td>43%</td>
<td>51%</td>
</tr>
</tbody>
</table>

*p<.05 compared to WaterGuard
Technology Preferences

<table>
<thead>
<tr>
<th></th>
<th>Baseline prefer</th>
<th>Exit prefer</th>
<th>Exit choose*</th>
</tr>
</thead>
<tbody>
<tr>
<td>WaterGuard</td>
<td>35%</td>
<td>21%</td>
<td>14%</td>
</tr>
<tr>
<td>PUR</td>
<td>18%</td>
<td>35%</td>
<td>40%</td>
</tr>
<tr>
<td>Ceramic pot</td>
<td>47%</td>
<td>44%</td>
<td>44%</td>
</tr>
</tbody>
</table>

*2% preferred soap to any technology
Western Alaska vs. Western Kenya
A Brief Comparison

Western Alaska

- Rural and remote
- Small populations
- Economy: service and subsistence
- Poverty rates: high
- Cost of living: high
- Few roads
- Expensive electricity
- Health services: good

Western Kenya

- Mostly rural
- Large populations
- Economy: informal and subsistence
- Poverty rates: high
- Cost of living: high
- Few roads
- Little or no electricity
- Health services: poor
A Brief Comparison

Western Alaska
- Water:
 - Accessible
 - Surface sources
 - Transport and store in home
- Maintenance challenges:
 - Cold climate
 - Climate change
- Cultural links to water
- Access to financing (government, other?)

Western Kenya
- Water:
 - Scarce
 - Surface and ground
 - Transport and store in home
- Maintenance challenges:
 - Heat, dust, low water table
 - Climate change
- Cultural links to water
- Little access to financing (NGOs, development agencies)
Lessons

• Choose proven, field-tested technologies
 – Durability
 – Feasibility
 – Microbiologic effectiveness
 – Affordability
 – Sustained, consistent use

• Conduct formative research in target population
 – Current practices
 – Understanding of cultural ties to water
 – Understanding of need for water treatment
 – Technology preferences (ie, provide menu of options)
Lessons

• Community participation/ownership is vital
 – Demand for safe water supply
 – Consistent household use
 – Maintenance/repair

• Integration in health services and schools can help

• A realistic financing plan is necessary
 – Cost recovery is desirable
 – The poor may not be able to pay
 – Alternative financing strategies may be necessary

• Policy support is important
 – Local to regional to national
Final Word

“The problems seem overwhelming. But these are all solvable problems. We just need a bigger and better response.”

--William H. Foege, MD, MPH
Thank You
Arctic WASH contributions from the Kingdom of Denmark - Greenland

Pernille Erland Jensen and Kristian Hammeken
Centre of Arctic Technology
Department of Civil Engineering
Technical University of Denmark
Outline

• Greenland
• A retrospect
• Present situation

• International conference in April
• Programs
Greenland

- Largest non-continental island in the world
 - 1.3 times Alaska
- Lowest population density worldwide
 - 56,000 inhabitants
 - 0.03 or 0.14 persons/km² (Alaska: 0.49/km²)
- Climate Sub-Arctic to Arctic
- Long distances and no roads to connect towns and settlements
- Fish industry – no mines or oil now
- 17 towns (380-17000 inhabitants)
- 56 settlements (25-500 inhabitants)
Present situation

• Sewers and access to improved water in major part of towns
• Honey buckets in major part of settlements and minor part of towns – very variable water resource situation from place to place.
My home as kid
Ittoqqortoormiit playing kids
Population: 380 in the town (70%)
150 in the villages (30%)

Unmixed solid waste and sewage

Solid Waste & Sewage
1979
Population: 460 in town (100%) 0 in the villages (0%)

Mixed solid waste and Sewage

Solid Waste & Sewage 2015
Ittoqqortoormiit Watersupply – 1980-81

Ittoqqortoormiit Watersupply - 2015
International conference in April

ARTEK Event 2016 - International Conference
Sanitation in Cold Climate Regions

Sisimiut, Greenland
ARTEK Event 2016

Calendar

ARTEK Events

http://www.artek.byg.dtu.dk/

What is the ARTEK Event?
ARTEK Event is an international technology conference arranged by the Arctic Technology Centre. It is held every 2nd year in Sisimiut and was held the first time in 2005. Next time will be in April 2016.

ARTEK EVENT 2016

The ARTEK Event 2016 has the topic Sanitation in Cold Climate Regions and has its focus on management of municipal and industrial waste and protection of water resources in the Arctic. The conference takes place 12 - 14 April in Sisimiut.

Background
The Arctic is undergoing substantial changes towards denser populations, introduction of modern industries, opening of shipping lanes and increases in the standard of living, leading to modern consumption rates. At the same time, climate changes are predicted to significantly impact the ecosystems in the Arctic.

The development in the Arctic creates new challenges in relation to waste and wastewater handling; pollution control, human health, management of contaminated land and protection of the water supply. There is a need for research and development of affordable, robust and sustainable engineering solutions that fulfill supply and environmental demands within the constraints of the Arctic climatic and infrastructural conditions.

The Artek Event 2016 offers the opportunity for participants from the industry, the public sector, the science community and other stakeholders to present, discuss and exchange ideas and experience on the management of municipal and industrial waste and protection of water resources in the Arctic.

Topics include, but are not restricted to:

- Arctic context
 Stand-alone/decentralized systems, island operated systems, small systems for cluster homes, remote and very small communities, cold climate issues, health issues and transportation challenges.
- Municipal wastewater
 Environmental impacts, treatment (passive and active), separation and composting toilets, un-sewered communities, sewerage in cold climate and sludge management.
- Drinking water
 Supply, safety, resources, quality, storage, distribution and treatment.
- Extractive industries
 Wastewater and solid waste, impacts, treatment methods, toxic and radioactive element removal, cyanide treatment, acid mine drainage treatment and prevention, processing chemicals impacts and treatment.
- Municipal solid waste and waste from food, fish and other industries
 Characteristics and volumes, sorting, reuse, incineration, composting, anaerobic digestion, deposition, from waste to energy potential and energy technologies.

> Book of Abstracts

> Official conference webpage

ARTEK EVENT 2014

ARTEK Event 2014 took place in Sisimiut from 7-9 April and had the topic Urbanisation and infrastructure in the Arctic.
ARTEK Event 2016

Thank you for a great ARTEK Event 2016 in Sisimiut, Greenland.

With over 100 participants and 55 presentations, the attendance for the ARTEK Event 2016 was by far the largest ever.

The conference attracted participants from all Arctic countries: USA, Canada, Russia, Finland, Iceland, Norway, Sweden and Denmark – including participants from Greenland and the Faroe Islands. The broad interest provided an opportunity to get acquainted with new technological solutions as well as new potential partners.

On this site you will find:

- Presentations and pictures from the conference.
- Information about the Arctic Council-endorsed project, “Improving Health through Safe and Affordable Access to Household Running Water and Sewer (WASH)”, which ARTEK Event 2016 is a part of.
- Information about the special issue in the journal Environmental Science and Pollution Research (ESPR) on Sanitation in Cold Climate Regions.

Updated by Sabina Askelöf Larsen on 3 June 2016
Special ESPR issue on Sanitation in Cold Climate Regions

The journal Environmental Science and Pollution Research (ESPR) will be publishing a special issue focusing on Sanitation in Cold Climate Regions.

The special issue will feature both critical reviews and research papers and will include but not be restricted to these topics:

- Waste water
- Solid waste
- Water supply
- Health
- Safety
- Environmental impacts
- Treatment
- Infrastructural issues

The submission deadline for papers has been set as 31st of October 2016. Earlier submissions are encouraged, and papers will be published online as soon as they have been accepted for publication.

Download this document for information on how to submit your contribution to the ESPR special issue on Sanitation in Cold Climate Regions.

For further information about this special issue, please read this invitation letter or contact Associate Professor Per Rieland Jensen.
ARTEK – Education
BEng Arctic Technology

- Three semesters in Sisimiut (GL)
- Three semesters DTU (DK)
- One semester internship in Greenland
- Thesis on Arctic topic
- Civil engineers, five specializations: Building design, Installations, Environment, Construction and Planning

- 20-25 students each year enroll
- Studying now total 90
- Graduated 70+
The Arctic Semester in Greenland

An opportunity for Master students to experience the challenges of engineering north of the Arctic Circle
Semester Structure (30 ECTS)

- The Arctic Infrastructure and Society (5 ECTS)
- Extreme Climates & Physical Nature (5 ECTS)
- Environmental Engineering in the Arctic (5 ECTS)

+ Infrastructure Constructions for the Arctic (15 ECTS)

or

- Sustainable Building for Extreme Environments (15 ECTS)
- Nordic master in Cold Climate Engineering
- DTU MSc Civil Engineering
- Exchange Semester
The Cold Climate Engineering partners

- Unis, Svalbard
- DTU Campus, Sisimiut, Greenland
- Aalto
- DTU
- NTNU
Nordic Master in Cold Climate Engineering

www.coldclimate-master.org

Arctic studies from space

Arctic studies at sea

Arctic studies on land

DTU + Aalto

NTNU + Aalto

DTU + NTNU
Qujanaq
A BEND IN THE RIVER
TRANSITIONING TO A TIME OF PERMANENT CHANGE

john matthews • johoma@alliance4water.org
anchorage, alaska, usa • 19 september 2016
HOPE IN A TIME OF GREAT TRANSITIONS

Qinghai Province, Tibetan Plateau, China
WHY IS AGWA HERE?

AGWA focuses on long-term sustainability — how do we manage water sustainably, for centuries

- technical knowledge: science, engineering, finance, economics — synergies, best practices
- enabling policy: can we help high-level decision makers understand and assist?

Co-chairs: World Bank and Stockholm International Water Institute (SIWI)

Membership: global, ~950 individuals

http://alliance4water.org
http://AGWAguide.org
WHAT ARE THE CLIMATE CHALLENGES?

climate extremes / disasters|
super droughts & floods|
tropical cyclones|

Resilience: return to normal

Resilience: Tracking change

|steady, creeping climate change
|climate “weirding”
|transformation

traditional & purely technical solutions are no longer real solutions
For humans, climate change is about water.

For water, climate change is about infrastructure & ecosystems.

Together, we have a crisis in how we make decisions about water.
To manage water reliably, we have always looked *backward* for guidance.

That era is over too. The past doesn’t tell us much about the future anymore.

Our challenge is to envision a range of probable futures.

Janus, the Roman god of transitions and journeys — looking into the future & past

WE CARELESSLY MADE 100 (200, 300) YEAR DECISIONS

SCIENCE & ENGINEERING CAN’T PROVIDE PRECISE, ACCURATE DETAIL ABOUT WHAT WILL HAPPEN — OR HOW QUICKLY

IF NECESSARY, WE CAN MAKE SHORTER DECISIONS THAT HELP US KEEP OPTIONS OPEN
HOW WE USUALLY MAKE LONG-TERM WATER DECISIONS

Users, stakeholders

Decision maker

Technical analyst

PROBLEM / NEED

SOLUTION

(1) users & stakeholders need to be involved much earlier.

(2) We need better (and probably multiple) solutions.

Not just the climate is changing. Our needs are too.

CLIMATE VULNERABILITY
(1) users & stakeholders need to be involved much earlier.

(2) We need better (and probably multiple) solutions.

http://AGWAGuide.org/EEDS
HOW WE DEFINE VULNERABILITY DEFINES OUR SOLUTIONS

1. Use GCMs to define the water risks
2. Inform stakeholders of GCM output
3. Hope the GCMs are correct

4. Test & compare alternate solutions, pathways
3. Develop robust, flexible solutions
2. Use GCMs and other climate data to explore risk tolerance
1. Have stakeholders, decision makers define problem

MOST ADAPTATION SINCE ~1995

SINCE ~2010

BOTTOM-UP ASSESSMENT
THE TRANSITION HAS BEGUN

Bottom-up approaches:
• Use existing decision making processes
• Define problems broadly, for broader solutions
• Work with rather than against uncertainty
• Helps the technical analyst to bridge knowledge & governance gaps

Ray/Brown, Confronting Climate Uncertainty, World Bank.
THREE METHODOLOGIES, ONE CORE APPROACH

Confronting Climate Uncertainty in Water Resources Planning and Project Design,
The Decision Tree Framework

Patrick A. Ray and Casey M. Brown

http://AGWAguide.org/risk/

Publishing 1 November 2016:
US Army Corps of Engineers, Rijkswaterstaat (NL), Deltares, University of Massachusetts @ Amherst
CRIDA: CONNECTING FOUR CIRCLES

SHARED VISION

stakeholder, decision maker needs

DECISION SCALING

robust solutions

ECO-ENGINEERING

ecological limits

ADAPTATION PATHWAYS

flexible solutions

performance indicators

• efficiency
• net present value
• productivity

stress tests

http://AGWAguide.org/risk/
SETTING STRATEGY: THE LEVEL OF CONCERN

Two key elements are then used to act on this strategy.
KEY ELEMENT 1

DECISION SCALING: DEFINING ROBUST SOLUTIONS

- Users / stakeholders define system failure
- Can mix many forms of climate data: GCMs, modeled data, paleo data, TEK, hypothetical situations

Technical analyst

Users, stakeholders

PROBLEM / NEED

“PERFORMANCE INDICATORS”

“STRESS TEST”

RISK TOLERANCE

HTTP://AGWAGUIDE.ORG/EEDS/#DS
HTTPS://YOUTUBE.BE/WORTE_2H_R8
ADAPTATION PATHWAYS: DEFINING FLEXIBLE SOLUTIONS

ECONOMIC HORIZON

PLANNING HORIZON

Option A
Option B
Option C
Option D
Option E
Option F
Option G
TWO EXAMPLES: MILLENNIUM CHALLENGE CORPORATION

Water Supply in Central Cebu, Philippines

Ioland Water Treatment Plant, Zambia

[Maps and diagrams showing water supply and treatment plants in different regions with emphasis on climate change risk and analytical uncertainty]

[Video link: HTTPS://YOUTUBE.BE/WORTE_2H_R8]
WHAT DOES CRIDA ADD TO TRADITIONAL PLANNING?

Publishing November 2016

• A “mother document” to guide adoption
• Early, repeated engagement with users & stakeholders for a shared vision
• Strong linkages between technical, user, and decision maker groups
• A broad vulnerability assessment
• Guidance on the strategic direction
• Adaptation pathways for flexibility
• Guidance on economic evaluation & institutional capacity

http://AGWAguide.org/risk/
FINANCING RESILIENCE

Launched May 2016: Water Climate Bond Standard

http://AGWAGuide.org/greenbonds/

San Francisco Makes History With New Water Bond

The city is leveraging the power of green bonds by issuing the first certified under the Water Climate Bonds Standard to help fund projects to repair the city’s aging water infrastructure, including the stormwater and sewer systems.
THANK YOU!

john matthews • johoma@alliance4water.org
State of Alaska’s R&D Project:
The Alaska Water & Sewer Challenge

Bill Griffith / Fatima Ochante
Village Safe Water Program
Alaska Department of Environmental Conservation
Progress in Alaska Village Sanitation

- 30 years ago, fewer than 25% of rural Alaska households had running water and flush toilets.
- In 1996, 55% of rural homes had piped or covered haul service.
- Today, approximately 85% of rural homes have indoor plumbing (over 90% if regional hubs are included in the calculation).
However...

- Conventional, community-wide piped systems and truck haul systems are expensive to construct, maintain and replace.
- Many communities cannot afford the high operation and maintenance costs associated with piped or haul systems.
- Available funding is not adequate to serve remaining homes and make needed improvements.
- Innovative approaches were needed in order to address health problems associated with water and sewer system deficiencies.
Service Level IV: Unlimited water use (assuming flat billing rate)
- Kitchen sink
- Bathroom sink
- Flush toilet
- Shower
- Laundry hookup

Service Level II: Flush tank and haul systems (typically by trailer)
- Kitchen sink
- Bathroom sink
- Flush toilet
- Shower
- Laundry hookup

Service Level III: Greywater reuse systems
- Kitchen sink
- Bathroom sink
- Flush toilet
- Shower
- Laundry hookup

Service Level I: Kivalina demonstration project
- Bathroom sink
- Dry, separating toilet
- No shower
- No laundry hookup

No Service
- No running water or sewer
- No flush toilet
- No shower
- No laundry hookup

Piped water and sewer service: Approximately 34,000 homes in villages

Individual water well and septic system: Approximately 1,000 homes in 20 villages

Approximately 9 homes served by ANTHC demonstration system in Kivalina

Approximately 550 homes in 8 villages served by existing flush tank and haul systems

Approximately 3,800 homes in villages throughout Alaska, including 30 unserved villages

Expense and degree of difficulty of maintaining and operating household equipment
State of Alaska Water & Sewer Challenge

Problem

- Over 3,300 rural Alaska homes lack running water and a flush toilet. Many more depend on aging and deteriorating piped and haul systems.
- Lack of in-home water and sewer in Alaska contributes to severe skin infections and respiratory illnesses. Residents of Southwest Alaska suffer rates of invasive pneumococcal disease that are among the highest in the world.
- To address this public health problem, agencies have funded conventional, community-wide piped and truck haul systems. These systems work, but they are expensive to construct, and many communities cannot afford the high operating costs.
- Funding to build systems has declined severely while costs have risen sharply. The deficit between available funds and needs is over $1 billion.
- Capital and operating costs of traditional approaches have become unsustainable. An innovative approach is needed.

Solution

The Alaska Department of Environmental Conservation, in coordination with tribal, state, and federal agencies, has initiated a project to spur widespread research to develop innovative and cost effective water and sewer systems for homes in remote Alaska villages. The project focuses on decentralized water and wastewater treatment, water re-use, and minimization. These approaches have a high potential for use in individual homes and housing clusters. Our goal is to significantly reduce the capital and operating cost of in-home running water and sewer in rural Alaska, so every home can have service.

www.WaterSewerChallenge.alaska.gov

(Revised September 2014)

Project

- Phase 1 (COMPLETED) Engineers, social scientists, innovators, and people with rural Alaska experience formed joint venture teams.
- Phase 2 (COMPLETED) Funding awarded to select teams to research and develop new and sustainable in-home water and sewer systems.
- Phase 3 (ONGOING) Development of working prototypes and lab testing of pilot systems.
- Phase 5 (2020+) Select successful systems that will be affordable to build, operate, and maintain.

Teams of Phase 3

DOWL, Alaska

DOWL Alaska proposes a graywater re-use system located in a small vestibule attached to the house. The vestibule minimizes space requirements and avoids expensive heat trace to an outside holding tank. DOWL’s prototype is at the Cold Climate Housing Research Center in Fairbanks. DOWL is also testing a Point-of-Use filter for drinking water.

Summit Consulting

Summit proposes an entirely in-home system designed to minimize water and wastewater hauling. Raw water is treated by multi-stage cartridges, an ultrafiltration membrane and disinfection to produce drinking water. Graywater is treated by a biological process and then disinfected. Summit’s system is at their main office complex outside Tok.

University of Alaska Anchorage

UAA proposes to treat both graywater and some blackwater, as well as a modular approach that allows homeowners to select in-home components that fit their lifestyles and space available. Membrane treatment and high dose ultraviolet disinfection are used to produce potable water. UAA’s system can be found on campus in Anchorage.
Alaska Water and Sewer Challenge

- State-funded research and development project projected to last 5 – 7 years
- Focus is on “decentralized” approaches – household based systems that utilize water re-use technologies
- Private sector driven – with ownership of intellectual property retained by project teams
- Goal is to significantly reduce the capital and operating costs of in-home running water and sewer in rural Alaska homes
- Funding to date is $4 million in state and federal funding. Additional funding will be required to complete the project
Multi-Agency Steering Committee

State

Tribal

Federal
Project Timeline

<table>
<thead>
<tr>
<th>Phase</th>
<th>Approximate Timeframe</th>
<th>Duration (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team Formation</td>
<td>Fall 2013 – Spring 2014</td>
<td>9</td>
</tr>
<tr>
<td>Proposal Development + Presentation</td>
<td>Fall 2014 – Summer 2015</td>
<td>8</td>
</tr>
<tr>
<td>Prototype Development + Pilot Testing</td>
<td>Fall 2015 – Summer 2017</td>
<td>21</td>
</tr>
<tr>
<td>Field System Development + Testing</td>
<td>Fall 2017 – Summer 2019</td>
<td>21</td>
</tr>
<tr>
<td>Technology Refinement + Improvement</td>
<td>2020 and beyond</td>
<td>?</td>
</tr>
</tbody>
</table>
Phase III: 2015 - 2017
 Prototype Development and Testing

- Three proposals funded for prototype development and testing.
- Targets and testing requirements have been provided.
- Engineering plans will be reviewed and approved.
- The results of testing phase will be presented to the Steering Committee.
- Systems that demonstrate promising results will be selected for field system development and testing.
Performance Targets

- Acceptance by users
- Affordable Operation
- Sufficient Water for Health Benefits
- Feasible Capital Cost
- Freeze Recovery Capability
- Durability Feasibility
- Parts Availability
Village Input

- End users provide the most valuable feedback for appropriate technology design
- ADEC partnership with rural communities to better inform the development of future home-based systems
- Teams are required to work with communities from different regions
Project Contacts: bill.griffith@alaska.gov
fatima.ochante@alaska.gov
Designing a Household Water & Wastewater System for Underserved Villages in Alaska

Chris Schulz & Janelle Rogers, CDM Smith
Chase Nelson & Mitch Titus, DOWL
Bruno Grunau, CCHRC
Laurie Krieger, Manoff Group
Presentation Topics

- AWSC design-think process
- Village trips and co-designing with end-users
- Key design features and system schematic
- Vestibule layout and dimensions
- HWWS prototype test plan and preliminary results
- O&M requirements and costs
AWSC Design-Think Process

OUR DESIGN TEAM CONSIDERED MANY IDEAS...

Commercially available water treatment technologies

...To Meet Village End-User Preferences
What We Mean by Design-Thinking

Old Way
(design and then try to get buy-in)

New Way with Design Thinking
(End users tell us what they want)

- Construct-ability
- Modularity
- Freeze-Thaw
- Regulatory Compliance
- User Acceptance
- Operating Cost
- Capital Cost
- Water for Health
We developed initial design concepts using “off-the-shelf” (chemical-free) components...

- Storage Tanks
- POE UV/Filter
- POU Filter
- Activated Media
- Ozone Generator
- Feed Pump
- PEX Plumbing
- UV Disinfection
- GAC Filter
- Saniflo Pump
- Hydropneumatic Tank
- Membranes
...configured in different ways to meet ADEC design requirements
We considered low-volume flush and odor-free bag toilets...

...to replace unsanitary honey buckets
We compared POE treatment and plumbing system for drinking water...

...against counter-top POU filters without plumbing
...and we evaluated attached vs. detached buildings for housing the HWWS equipment.
Village Visits and Co-Designing with End-Users

CO-DESIGNING WITH END-USER

- Anxiety over high electricity costs
- Recycled greywater quality must be safe to use for washing and cleaning
- Preference for rainwater/melted ice-water for drinking
- Preference for vestibule attached to house with lockable door from inside
- Preference for reducing wastewater haul costs
- Preference to have indoor plumbing and flush toilet if it can be made affordable
- Simple “red/green” alarms for greywater recycle system
In March 2015 and March 2016 the DOWL Team travelled to three villages: Shishmaref, Tununak, and Kwigillingok.
We visited numerous homes and talked with potential end-users

- Interviewed 64 residents in three villages, plus a 6 person focus group in Shishmaref and 19-person community meeting in Tununak
We observed existing “pump and haul” systems
Key Village Findings—Drinking Water

- Strong preference for drinking with ice melt or rain water—several people used Brita filters
- Dislike of chlorine and chlorine taste
- Preference for POU filter instead of separate tap
Key Village Findings—Washing and Cleaning

- Community treated water used for cleaning and dish washing
- Household greywater stored in outdoor tank (for village hauling) or thrown on ground
- Washeteria used for laundry and showers (if available in village)
- Reuse of greywater a concern—understood cost benefits but must be safe

High cost of electricity is big concern ($0.65/kWhr in Shishmaref)
Key Village Findings—Toilets and Wastewater Collection

- Observed variety of toilets & honeybuckets
- Villages charge monthly fee for collection of honeybucket waste bags
- Hauling of wastewater expensive and unreliable in some villages

Macerator Toilet
Honeybucket
Toilet flushing with used sink water
Honeybucket used instead of toilet due to high electricity costs
Summary of End-User Input for Co-Designing HWWS

- Attach vestibule to house with lockable door
- Use POE filter for treating rainwater/melted ice-water
- Use indoor plumbing and LVF toilet
- Recycled greywater quality must be safe to use
- System must be freeze-proof
- System must not damage house structure

Focus Group in Shishmaref
Key Design Features and System Schematic

KEY DESIGN FEATURES (Based on End-User Co-Design)

1. Vestibule enclosure for GW system attached to side of house
2. Ambient heat transfer from house to vestibule
3. Independent vestibule foundation
4. Low-volume flush toilet (< 0.5 gpf)
5. Two-stage GAC filter for organics reduction
6. Two lamp, self-cleaning UV disinfection system
7. Low power consumption and no chemicals
8. POU filter for drinking water
9. Grundfos feed pump with pressure control
10. Sediment cartridge filter for GAC filter backwash treatment

TREATMENT & PLUMBING SYSTEM SCHEMATIC
Key Design Features—Greywater Recycle and Drinking Water Treatment Components

- **Grundfos Feed Pump**
- **Two-Stage GAC Filter**
- **Activated Media Disinfection unit**
- **Two-Lamp, Self-Cleaning UV System**
- **Sediment Cartridge Filter**
- **PE Vertical Tanks**
- **POU Drinking Water Filter**
Key Design Features—Vestibule and Household Plumbing Components

- Vestibule Attached to Side of house
- Independent Vestibule Foundation
- LVF toilet (< 0.5 gpf)
- Accordion-Type Flexible Joint
- Saniflo Return Pump
Prototype HWWS Process and Instrumentation Drawing (see Poster)
HWWS Vestibule and Mock Plumbing Layout and Dimensions
Vestibule Dimensions
Mock Household Plumbing System
HWWS Prototype Test Plan and Preliminary Results

Prototype Test Plan

- 9-month testing period at CCHRC Prototype Test Facility (May 2016 through January 2017)
- 13 regular and stress household fixture flow scenarios
- Three raw water sources: rainwater, river water and pond water
- Continuous monitoring of five plumbing fixtures, BW/GW tank levels and power usage
- Daily water fill and flow rate monitoring for point-of-use filters
- Periodic LVF toilet flushing tests for bulk waste removal
- Monthly water quality sampling to meet USEPA and ADEC water quality standards
HWWS Prototype Test Plan

- 9-month testing period at CCHRC Prototype Test Facility (May thru January 2016)
- 13 stress flow scenarios for five household fixtures
- Three raw water sources: rainwater, river water and pond water
- Continuous monitoring of fixture flows BW/GW tank levels and power usage
- Daily water fill and flow rate monitoring for POU filters
- Periodic LVF toilet flushing tests for bulk waste removal
- Monthly water quality sampling to meet NSF-350 and drinking water quality standards
HWWS Prototype Vestibule Construction
HWWS Equipment Inside Vestibule (see 360 photo on I Pad)
Mock Household Plumbing Structure
(see 360 photo on iPad)
Mock Household Plumbing System
Mock plumbing flows meet daily water usage target of 60 gpd
Both POU filters achieved complete (100%) bacteria removal.

<table>
<thead>
<tr>
<th>Water Depth Above Filter Cartridge - inches</th>
<th>Flow L/Hr</th>
<th>Kohler Clarity Filter</th>
<th>Stacked Bucket Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>E. Coli Log Reduction (Log)</td>
<td>Outlet E.Coli concentration (CFU/100 mL)</td>
</tr>
<tr>
<td>10.5</td>
<td>3.4</td>
<td>NA</td>
<td><1</td>
</tr>
<tr>
<td>7</td>
<td>2.3</td>
<td>NA</td>
<td><1</td>
</tr>
<tr>
<td>3 (5 liters)</td>
<td>0.9</td>
<td>> 7.1</td>
<td><1</td>
</tr>
<tr>
<td>1.8 (3 liters)</td>
<td>0.5</td>
<td>> 7.1</td>
<td><1</td>
</tr>
<tr>
<td>0.9 (1.5 liters)</td>
<td>0.3</td>
<td>> 7.1</td>
<td><1</td>
</tr>
</tbody>
</table>
POU Filter Flow and Chlorine Removal Test Results (double filter element)

Filter Flow

- **Volume, L**
 - 1st: 4.5 ± 0.2
 - 2nd: 3.2 ± 0.1
 - 3rd: 2.1 ± 0.1

- **Sampling Hour**
 - 1st
 - 2nd
 - 3rd

Chlorine Removal

- **Total Chlorine, mg/L**
 - Influent: ND
 - 1st hour: ND
 - 2nd hour: ND
 - 3rd hour: ND

Dual filters with GAC packing achieved 100% chlorine removal
Greywater and Hygiene Water Preliminary Water Quality Results (Physical and Chemical)

Greywater Concentration (mg/L)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ADEC Greywater Range</th>
<th>ADEC Hygiene Water Range</th>
<th>HWWS Results (N=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td><10 mg/L</td>
<td><10 NTU</td>
<td><5 CU</td>
</tr>
<tr>
<td>BOD</td>
<td><10 mg/L</td>
<td><10 NTU</td>
<td></td>
</tr>
<tr>
<td>TOC</td>
<td><10 mg/L</td>
<td><10 NTU</td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td><10 mg/L</td>
<td><10 NTU</td>
<td></td>
</tr>
</tbody>
</table>

Greywater targets hard to hit, but hygiene WQ targets still met.
Greywater and Hygiene Water Preliminary Water Quality Results (Coliform Bacteria)

Monthly Sample Events: April, May, July

- April: >10^6, >10^6
- May: <1.0, <1.0, <1.0
- July: 30

ADEC Greywater TC Range
ADEC Greywater EC Range
Hygiene Water TC Results
Hygiene Water EC Results

Very high microbial growth rates in GW tank impacted hygiene WQ
O&M Requirements and Cost

O&M REQUIREMENTS & COST

Greywater Treatment and Recycle System:
- Refill 300-gallon GW tank on 20-30 day cycle using village pumper truck or plastic containers from local water point
- Empty BW tank on 20-30 day cycle using village vacuum truck
- Respond to pump and tank level audio/visual alarms
- Contact maintenance co-op for annual replacement of UV lamp and filter media, plus pump inspection and repairs

POU Drinking Water Filter System:
- Use clean sponge to wipe down filter elements when flows drop below an acceptable level
- Replace filter elements once a year, or as needed

Costs (see graphic):
- Capital and monthly O&M costs for HWWS system meet ADEC affordability targets
- Monthly O&M cost based on unit prices for power, water and liquid waste hauling in Shishmaref
Household O&M Requirements
Greywater and Blackwater Systems

- Refill 300-gallon GW tank and empty BW tank on 20-30 day cycle
- Check sediment filter weekly and clean as needed
- Respond to pump and tank level audio/visual alarms

Maintenance co-op:
- Annual HWWS inspection and as needed repairs
- Annual replacement of UV lamp, cartridge filter and GAC filter media
Household O&M Requirements
POU Drinking Water Filter System

- Use clean sponge to wipe down filter elements when flows drop below an acceptable level
- Replace filter elements once a year, or as needed
Capital and O&M Costs

- Capital and monthly O&M costs for HWWS system meet ADEC affordability targets.
- Monthly O&M cost based on unit prices for power, water, and liquid waste hauling in Shishmaref.
THANK YOU
ALASKA WATER + SEWER CHALLENGE
Water Innovations for Healthy Arctic Homes
September 19-21, 2016
Summit Consulting Services
www.summitwsc.com
www.facebook.com/summitakwsc/

AGNEW BECK
RELOCATE
The Phase III Team

Summit

Re-Locate

Agnew::Beck Consulting

Kivalina

Kongiganak
Quick Tour

The Entry Way

http://on.bubb.li/433755aponyr4n7h3mx56/

The Kitchen

http://on.bubb.li/433755aalfovrblavbdcbj/

The Bathroom

http://on.bubb.li/433755alx558y70ppj81814/
Design Highlights

- Fits within the home
- Treats water for drinking
- Treats wash water using an Aqua 2Use greywater treatment system
- Includes two toilet options
- Includes freeze-thaw protection
- Designed to be installed and maintained with local labor
Drinking Water
Drinking Water Treatment

- Washable Silver Zeolite Filter
- 1 Micron Cartridge Filter
- Ultrafiltration Membrane
- Carbon Polishing Filter

Quantum Silecte Disinfection
Wash Water
Wash Water Treatment
Wash Water Treatment (aLt)
Waste Water
Toilet Options
Water in, water out
Kitchen + Bathroom
Bathroom
Freeze – Thaw Protection
What we have heard from end users

System needs to fit within the home
Water must be clean
Reduce water hauling
Easy to modify
Make it kid proof
Limit condensation
End user input to system design

Utility sink
Two toilet options
Integration with rain water catchment
Kid-proofing options (color coding, tap placement)
Reusable filters
Comfort with water reuse

Comfort with recycled water use for handwashing
Daily Water Flows (Range)

Raw water used: **10 – 17 gallons**

Drinking water used: **3 gallons**

Wash water in circulation: **57 gallons**

Wastewater produced: **9.5 – 16.5 gallons**

The raw water consumption and wastewater produced vary by the type of toilet used.
Financial Costs

Capital cost: **$125,000 per home***

Monthly operation cost:

$183 for dry toilet / $243 for flush toilet

<table>
<thead>
<tr>
<th>Item</th>
<th>Monthly cost Dry Toilet (A)</th>
<th>Monthly cost Flush Toilet (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>$13.30</td>
<td>$10.76</td>
</tr>
<tr>
<td>Consumables</td>
<td>$17.92</td>
<td>$13.67</td>
</tr>
<tr>
<td>Water at $.10/galloon</td>
<td>$20.10</td>
<td>$34.17</td>
</tr>
<tr>
<td>Wastewater haul at $.25/gallon</td>
<td>$71.25</td>
<td>$123.75</td>
</tr>
<tr>
<td>Co-op</td>
<td>$40</td>
<td>$40</td>
</tr>
<tr>
<td>Replacement parts (Avg.)</td>
<td>$20.83</td>
<td>$20.83</td>
</tr>
</tbody>
</table>
Testing Results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate (mg/L)</td>
<td>0.3</td>
<td>NT</td>
</tr>
<tr>
<td>Total Coliform (MPN/100ml)</td>
<td>7.4</td>
<td>2</td>
</tr>
<tr>
<td>E-Coli (MPN/100ml)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>All other parameters No Detect</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform (MPN/100ml)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E-Coli (MPN/100ml)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Testing Results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform (MPN/100ml)</td>
<td>100-1,000</td>
<td>>2,400</td>
<td>>2,400</td>
</tr>
<tr>
<td>E-Coli (MPN/100ml)</td>
<td>1,000-10,000</td>
<td>1,700</td>
<td>>2,400</td>
</tr>
<tr>
<td>pH</td>
<td>6.5-8.5</td>
<td>8-9</td>
<td>8.4</td>
</tr>
<tr>
<td>TOC (mg/L)</td>
<td>50-100</td>
<td>1,890</td>
<td>430</td>
</tr>
<tr>
<td>COD (mg/L)</td>
<td>250-400</td>
<td>490</td>
<td>1,000</td>
</tr>
<tr>
<td>TSS (mg/L)</td>
<td>80-160</td>
<td>24</td>
<td>525</td>
</tr>
<tr>
<td>TURBIDITY (NTU)</td>
<td>50-100</td>
<td>34</td>
<td>63</td>
</tr>
<tr>
<td>BOD$_5$ (mg/L)</td>
<td>130-180</td>
<td>169</td>
<td>1,220</td>
</tr>
<tr>
<td>PHOSPHORUS (mg/L)</td>
<td>1-3</td>
<td>8.4</td>
<td>14</td>
</tr>
<tr>
<td>TKN (mg/L)</td>
<td>3-5</td>
<td>4.01</td>
<td>5.97</td>
</tr>
</tbody>
</table>
Testing Results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform (MPN/100ml)</td>
<td>none</td>
<td>81</td>
<td>180</td>
</tr>
<tr>
<td>E-Coli (MPN/100ml)</td>
<td>none</td>
<td>No detect</td>
<td>No detect</td>
</tr>
<tr>
<td>pH</td>
<td>6.0-9.0</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>TSS (mg/L)</td>
<td><30</td>
<td>2</td>
<td>4.8</td>
</tr>
<tr>
<td>Color, apparent</td>
<td>Test only</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>TURBIDITY (NTU)</td>
<td><10</td>
<td>No Detect</td>
<td>5.5</td>
</tr>
<tr>
<td>BOD₅ (mg/L)</td>
<td><25</td>
<td>10.7</td>
<td>23.8</td>
</tr>
<tr>
<td>Odor</td>
<td>Non-offensive</td>
<td>present</td>
<td>present</td>
</tr>
<tr>
<td>Oily Film and Foam (mg/L)*</td>
<td>Non-detect</td>
<td>Not Tested</td>
<td>1.29</td>
</tr>
</tbody>
</table>

* Tested as methylene blue active substances assay (MBAS)
Operations + Maintenance Issues

Homeowner tasks

Co-op – system support

End user requests: re-usable parts, maintenance support and locally available parts.

Concerns: soap smell, kid proofing
The biggest drawback of a typical piped water and sewer system is that they are not portable. Some Alaskan communities are vulnerable to flooding and erosion; therefore, some funding agencies have been reluctant to invest in infrastructure. The PASS systems can be assembled and reassembled if a community has to relocate.

The Alaska Native Tribal Health Consortium and the Cold Climate Housing Research Center have designed and implemented a low cost sanitation alternative for communities that are affected by climate change. The PASS systems are approximately $26,000 per household as compared to a traditional piped system that costs approximately $168,000 per household.

The PASS was implemented in nine homes in Kivalina, Alaska. Kivalina has been operating on a self-haul system. This exposure to raw sewage places community members at risk for waterborne pathogens. The innovative systems vastly improve hauling by limiting exposure to waste, minimizing odor, and reducing frequency and weight of hauls.

The system is entirely homeowner-based, designed to address the most basic sanitation needs, and can be moved with the community. The systems are stand-alone models; as homes are moved to the new village site away from the eroding coastline, residents can bring their clean water and safe sewer systems with them.
Waste is separated into liquid and solid components where the liquid is disposed of into a seepage pit and dried solids are disposed of in the landfill.

For an 800-square-foot home with a catchment area of approximately 1,200 square feet, it is possible to recover nearly 3,000 gallons or more of rain each year to supplement the quantity of water hauled to the home.

PORTABLE ALTERNATIVE SANITATION SYSTEM

1. RAIN CATCHMENT
 For an 800-square-foot home with a catchment area of approximately 1,200 square feet, it is possible to recover nearly 3,000 gallons or more of rain each year to supplement the quantity of water hauled to the home.

2. WATER STORAGE TANK
 The 100-gallon, gravity-fed tank does not require electricity.

3. LOW-FLOW SINK AND WATERLESS URINAL
 The sink and urinal conserves water while providing for hygiene and sanitation needs.

4. GREY WATER TANK
 The grey water tank purges into the seepage pit below when full.

5. INTEGRATED VENTILATION
 An energy-efficient combined ventilation system dries the waste, reduces odors, and ventilates the home.

6. SEPARATING TOILET
 Waste is separated into liquid and solid components where the liquid is disposed of into a seepage pit and dried solids are disposed of in the landfill.

7. WATER TREATMENT SYSTEM
 The water treatment system incorporates membranes and chlorination for point-of-use treatment to ensure the water is safe to drink despite its condition upon entering the system.
Community Perspectives on Water Insecurity in Rural Alaska

Dr. Laura Eichelberger, PhD, MPH
University of Texas at San Antonio
Water Insecurity

* ~20% households lack in-home plumbing.

* Many more others are water insecure:
 * Unreliable access to water
 * Poor sanitation
 * Water rationing

* System failures are common due to economic, environmental challenges.
Define water insecurity and how anthropologists study this problem

Report findings from research on
- Dimensions of water insecurity
- Social and environmental axes
- Daily lived experiences: practices and concerns
- Narratives of insecurity: “spoiled by technology”
Anthropology of water

Water as “total social fact” (Orlove and Caton 2010):

* enables life
* involves social interactions, social hierarchies, practices, and cultural meanings.
* culturally specific
* structured by infrastructure and policies
Anthropology of water

* **Waterscape**
 * Meanings people give to water in its different forms.
 * “Rain water is the most pure.”
 * Social interactions and practices that are shaped by water, and which affect where it flows.
 * Water plant operators, utility managers, customers...
 * Political and economic factors that affect water
 * Policies
 * Affordability, poverty
My Research

* How does water insecurity affect daily life?
 * (practices around obtaining water and its uses)

* What are the affects on health and wellbeing, broadly defined?

* How people talk water insecurity?
Methods (Phase 1: 2008-09)

Northwest Arctic Borough
March 2008-June 2009

In-depth field research:
* 3 remote Iñupiaq villages
 * 2 with partial water/sewer service
 * 1 with “self-haul” (Buckland)
* Kotzebue (regional hub)

Participant observation
* CBPR: photovoice, community mapping
* Semi-structured interviews (N=101)
* Direct observation
* 21 surveys in Buckland

Archival research: history of
* Iñupiaq and village health
* Public health interventions
* Water/sewer development in remote Alaska
Methods (2015-16)

Follow-up Research:
- Ambler, Buckland, Kotzebue:
 - Follow-up key informant interviews
 - Participant observation

Preliminary Research:
- Newtok:
 - Participant observation
 - Open-ended, semi-structured interviews (N=16)

Enjoying traditional foods with Minnie Gray, Ambler 2016
Buckland (2008-2009)

* Iñupiaq, NW AK
* Population: 450+ (now 500+)
* Self-haul & honey bucket
* Yearly spring flood increased cross-contamination
* 15-year long piped water and sewer project
 * Completed by VSW & Summit
 * 2016: all but 2 households connected
 * Problems with affordability
 * Disconnections
 * Erosion

“Warning: pond contains sewage. Stay out.”
Newtok (2016)

- Population: 354 (2010 Census)
- Self-haul & honey bucket
- Relocating due to effects of climate change.
 - Flooding
 - Erosion
 - Melting permafrost
 - Severe storms
Buckland (2008-09)

* "Washeteria"
 * Central watering point
 * Showers ($2/7 minutes)
 * Laundry facilities:
 * 4 washing machines for 450+ pop.
 * $4/load

* Untreated sources: river, spring
 * Limited use

* Cross-contamination from honey buckets

Newtok (2016)

* "PHS" (water treatment plant)
 * Central watering point
 * No public showers (steam baths)
 * No laundry facilities (Danby washers @ home)

* Newtok School
 * Treated water, showers, laundry
 * Normal access limited to associate teachers
 * Emergency access: 10 gal/household/day

* Untreated sources: rainwater, ponds, spring
 * Frequent use

* Cross-contamination from honey buckets
Quantifying Water Insecurity

5 Factors

* Amount
* Distance
* Time
* Quality
* Affordability

* 50 liters (13.2 gal)/person/day
* Tap <100 meters away
* <5 minutes collection time
* Acceptable quality with minimum risk to health
* (Affordability)
Quantifying Water Insecurity

<table>
<thead>
<tr>
<th></th>
<th>WHO Criteria(^1) (Ref.)</th>
<th>Buckland(^2) (2008-09)</th>
<th>Newtok(^3) (2016)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
<td>N=21</td>
<td>N=11</td>
</tr>
<tr>
<td>Amount (gal/c/day)</td>
<td>13.2 gal</td>
<td>2.4 gal</td>
<td>2.3 gal</td>
</tr>
<tr>
<td>Distance</td>
<td><100 meters</td>
<td>>100 meters</td>
<td>>100 meters</td>
</tr>
<tr>
<td>Time</td>
<td><5 min</td>
<td>15-45 min.</td>
<td>15-45 min.</td>
</tr>
</tbody>
</table>

\(^1\)Howard and Bartram 2003; \(^2\)Eichelberger 2010; \(^3\)Eichelberger *Unpublished* preliminary data
Social and environmental circumstances that overlap to increase insecurity:

- Age
- Ability
- Social/Kin network
- Access to vehicle
- Climate vulnerabilities

(>Eichelberger 2010<)

“<It’s elders ... I worry about. Who takes care of them when the boys go off to do subsistence?...>

“We tell [the kids], ‘Go pack water, dump honey buckets, do their dishes. Visit them,’ we say. ‘It just takes thirty minutes.’”

--Mother and Yup’ik teacher, Newtok
Daily Lived Experiences
& Hidden Costs of Insecurity

* Daily life revolves around when & how to get water.
 * For most: requires kin relationships
 * Sharing water with those without
 * Paying others to haul

* Time-consuming
 * Travel to alternative sources
 * Opportunity costs: subsistence, cultural & economic activities, etc.

“I have to run back and forth 5 or 6 times unless I borrow a larger bucket. I can do it in 15 minutes if I rush... 30 gallons will last you for one whole week if you’re careful.”

- Mother, Buckland
Hidden Costs: Gender & Age

Particular affects for women and children.

* Time:
 * 4-8 hours for laundry at washeteria

* High health risk for children
 * Women travel with sick children
 * Lost time at work, school
 * Stigma/social isolation at school
 * Contribution to depression?

“There’s a degree of likeness and dislike. Kids don’t want to be partners with kids who smell.”

After the flood in Buckland 2008
“Every day we’d go listen to stories from the elders, but they wouldn’t tell us any until we’d do something. Chop wood, packing water, packing ice. It was a daily thing.”

“Everyone used to share and help each other… But that was before we had to pay for the lights, the stove oil, and the water. Now we need money.”
Water as “total social fact” (Orlove and Caton 2010):
* enables life
* social interactions practices, and cultural meanings
* structured by infrastructure and policies

Traditional values and water access:
* **Sharing, hard work, cooperation**
* **Respect for elders**

Centralized water systems thus far have not reflected traditional values:
* Paying for water
* Disconnecting elders, others
Narratives of distress: Trade-offs for water security?

Desire for running water/sewer

“Everyone deserves a hot bath and a good, cold drink of water. Our forefathers fought hard for this country and we deserve better... It's like a Third World country here.”

“Right now, in 2009, I have six honey buckets in front of my house. In 2009! ... My kids get sick every spring from it. It’s not good for U.S. people like us.”

“Spoiled” by technology

* “The lights, the toilet... it spoiled us, but we can’t go back and unravel it.”

* “Modern technology is making us sick... Electricity, water, sewer, TV... You don't have to do anything physical.”
Quyana

Villages of Ambler, Buckland, Newtok, & Selawik

Maniilaq Association
Northwest Alaska Native Association
Northwest Arctic Borough

ANTHC
VSW
CDC AIP
UAA ISER
“Spoiled by technology”

- Decreased sharing
 - Replaced by bills
 - Paying someone to haul water

- Loss of traditional and subsistence knowledge
Access & Adequacy: Summary

WHO

- Adequate: 13.2 gal/person/day
- Tap <100 meters away
- <5 minutes collection time
- (cost?)

Buckland

- Average: 2.4 gal/person/day
- Few houses within 100 meters
- 15-45 minutes for 15-30 gallons
- Fluctuations:
 - Seasonal
 - Varies by social axes:
 - Single mothers/no male kin
 - Disabled, elders
 - Wealth/Vehicle

1Howard and Bartram 2003; 2Eichelberger 2010
Practices: Uncertainty of Access

* Sharing
 * Allowing kin to use running water
 * Hauling water for kin

* Paying others to haul
 * Usually if weak kin network

* Collecting as much possible from natural sources
 * (difficult to quantify)

* Rationing:
 * Reusing water in washer, washbasin, bathtub
 * Using wipes instead of handwashing
Daily Life: Time

Buckland (2008-09)

* Hauling water:
 * 15-45 minutes for 5-30 gallons
 * Depends on access to vehicle

* Laundry: 4-8 hours
 * 4 washing machines for 450+ pop.
 * Most busy on weekends
 * Affects women more than men

* Health-related
 * Travel with children to hospital
 * Missed work, school

Newtok (2016)

* Hauling treated water:
 * 15-45 minutes: 5-30 gallons
 * Depends on access to vehicle
 * Multiple trips if doing laundry and/or hauling without vehicle

* Hauling water from other sources
 * Requires access to vehicle/boat
 * Having/paying others to haul
Practices: Risk Perceptions & Preventing Disease

- Preference for natural (untreated) sources
 - (Can also be cultural preference)

- Not bathing children under 1 year old

- Pouring gasoline into puddles to kill bacteria

- Avoiding traditional berry picking areas

- Removing shoes in home
Daily Life: Health & Stigma

- Avoiding particular areas, households, individuals
- Households with disease characterized as “lazy”
- Stigma: children socially ostracized
- There’s a degree of likeness and dislike. Kids don’t want to be partners with kids who smell.”
Practices to Prevent or Treat Water-Wash Diseases

- Traditional medicines & lay epidemiology:
 - Ear aches:
 - Beluga oil
 - Cigarette smoke
 - Sore throats:
 - Beluga blubber
 - Duck oil
 - Sliced potato compress
 - Willow buds

- Order of use:
 1) Traditional medicines
 2) OTC/Prescription

- Save antibiotics after cessation of symptoms

- “Blubber is good for sore throats with white patches and things stuck in the throat because everything sticks to it and comes out.”
Environmental Axes & Water-Energy Nexus

- Extreme cold
- Flooding
- Permafrost
- Turbidity
- Climate change

- Energy-intensive, extremely expensive
 - Dependent on state subsidies
 - Vehicles to haul water
Social Axes of Insecurity

- Social circumstances that overlap to put individuals at risk for adverse health outcomes (Farmer 1996)
 - Age
 - Gender
 - Physical ability/disability
 - Socio-economic factors: Can you afford the water?
 - Social network: Is there someone who can haul water for you?

(Eichelberger 2010)
Social Axes: Buckland

Social circumstances that overlap to put individuals at risk for adverse health outcomes (Farmer 1996)

Wealth:
- No vehicle ➔ 5-10 gallons/haul
- Vehicle ➔ 18-400 gal/haul
- Flush-hold ➔ 200-400 gal/haul

Gender: single mothers
- range: 5-60 gal
- w/o vehicle: 5-15 gal
Environmental Axes of Water Insecurity

Buckland

- Washateria closures
 - Spring ice jam flood
 - Broken generator for pumping raw water
 - Extreme cold
 - Unknown reasons

- No alternative sources for treated water

Newtok

- PHS closures
 - Limited pumping season (summer) & inadequate storage capacity for treated water
 - No electricity ➔ PHS froze up (Still unrepaired)
 - Storms
 - Flooding
 - Erosion: impending loss of water source

- School provides emergency access: 10 gal/household/day
Social & Environmental Axes of Water Insecurity

<table>
<thead>
<tr>
<th></th>
<th>WHO Criteria (Ref.)</th>
<th>Buckland (2008-09)</th>
<th>Newtok (2016)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
<td>N=21</td>
<td>N=11</td>
</tr>
<tr>
<td>Average (gal/c/day)</td>
<td>13.2 gal</td>
<td>2.4 gal</td>
<td>2.3 gal</td>
</tr>
<tr>
<td>Social Axes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single mothers</td>
<td>13.2 gal</td>
<td>2.0 gal</td>
<td></td>
</tr>
<tr>
<td>Flush-hold system</td>
<td>13.2 gal</td>
<td>4.8 gal</td>
<td></td>
</tr>
<tr>
<td>No vehicle</td>
<td>13.2 gal</td>
<td>1.8 gal</td>
<td></td>
</tr>
<tr>
<td>No male kin* at home</td>
<td>13.2 gal</td>
<td>1.0 gal</td>
<td></td>
</tr>
<tr>
<td>Single mother without male kin*</td>
<td>13.2 gal</td>
<td>0.7 gal</td>
<td></td>
</tr>
<tr>
<td>Climate Vulnerabilities</td>
<td></td>
<td>0 gal</td>
<td>1.8 gal</td>
</tr>
</tbody>
</table>
Sewerage

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>* Honey buckets</td>
<td>* Honey buckets</td>
</tr>
<tr>
<td>* City hauled sewage to lagoon</td>
<td>* No sewage lagoon</td>
</tr>
<tr>
<td>* ~1 mile from village</td>
<td>* Households self haul</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Residents dispose of over 2 riverbanks bordering community</td>
</tr>
<tr>
<td></td>
<td>* ~20 feet from some homes</td>
</tr>
</tbody>
</table>
Education and Behavior Change Efforts to Maximize the Health Benefits and Sustainability of Water and Sanitation

AJ Salkoski, Sr. Program Manager
John Nichols, P.E. - Manager of Utility Operations, ANTHC
Alaska Native Tribal Health Consortium

Alaska Native Medical Center

Environmental Health and Engineering

Community Health Services
OUR VISION: Alaska Native people are the healthiest people in the world.
Welcome to the Real World!

• From engineering school to Public Works Director, City of Dillingham, Alaska.
• Balance water utility budget without rate increase.
• Collecting from non-paying customers =
 – Balanced budget, no rate increase, and....
 – Social and political uproar
• Must proactively connect with customers and community leaders
 – No engineering guidance on this topic
Project Meq-Egtaq
(“Nice Water” – Yupik)

Provision of infrastructure complemented with education activities to have greatest impact
Promotion Program

• Formative research informed program design.
• Developed to improve uptake of modern water services for human consumption and hygiene practices.
• Individual and community-level interventions.
• Key messages:
 – Chlorine safety and reasons for use.
 – Strategies to minimize chlorine taste.
 – Free and liberal use of treated.
Results

• Significant increases in drinking treated water.
• Average daily per capita water use increased from a level of “very high health concern” to one of “very low health concern” at project’s end.
 – 1 gpcd to 25.3 gpcd
Project Meq-Egtaq
National Tribal Water Center

Mission: to serve as a culturally appropriate resource to maximize the health and wellbeing of AIAN people through water and sanitation.

Background: established to fill gaps in the traditional IHS service delivery model; complement and enhance existing services, not replace.
Example Projects

• “Our Water” Toolkit
 – Resources for education and action planning; aims to connect and support tribes in their efforts to ensure sustainable access to safe water and maximize the benefits of healthy water practices.
 – Draft to be completed September 30th.

• Water Is Life
 – Education and awareness campaign that aims to increase community pride in ownership of water and sanitation systems.
 – Pilot stage – has had positive results (Russian Mission, red to black)

• Project Coyote Water
 – Identification of unregulated water use data and water-issues of greatest concern to tribes.
 – Report sent to Tribes in July; Will provide information to Tribes and agencies to guide future monitoring or funding opportunities.
Portable Alternative Sanitation System (PASS)

Pilot Project – Kivalina, AK

User Education
Training Methods

- Onsite orientation.
 - Best trainer was onsite plumber!
- Comprehensive user manual.
- Training video.
- Regular check-in calls.
Kivalina-Related Pics

PASS (PORTABLE ARCTIC SANITATION SYSTEM) MANUAL
VERSION 2015

ALASKA NATIVE TRIBAL HEALTH CONSORTIUM

Cold Climate Housing and Research Center, LifeWater Engineering Company, CampWater Industries LLC, and the National Tribal Water Center.
Lessons Learned

• Onsite training is the most valuable.
 – When asked what could be improved for training, one person said, “Nothing really. [You are] doing good about flying out here. You're not somewhere in your office.”
 – Another said that they had no problems or concerns, they felt “indoctrinated” by the time the trainers left.

• Training needs to be mandatory for residents.
• Simple is best.
• Repetition and follow-up are key.
• Connect community members.
• Good training requires good investment.
Alaska Rural Utility Collaborative

- Full service management service
- 27 member communities
- Rates rise & fall with expenses independently in each community.
- Dillingham experience valuable
Result of Connecting with Customers: Improved Financial Sustainability

ARUC PROGRAM COMBINED ASSETS (LOCAL RESERVES) AND LIABILITIES

<table>
<thead>
<tr>
<th>Date</th>
<th>Liabilities</th>
<th>Assets</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/30/2011</td>
<td>$(940,870)</td>
<td>10 Villages $437,566</td>
</tr>
<tr>
<td>9/30/2012</td>
<td>$(1,500,213)</td>
<td>13 Villages $535,071</td>
</tr>
<tr>
<td>9/30/2013</td>
<td>$(1,125,452)</td>
<td>15 Villages $555,709</td>
</tr>
<tr>
<td>9/30/2014</td>
<td>$(793,053)</td>
<td>18 Villages $818,855</td>
</tr>
<tr>
<td>9/30/2015</td>
<td>$(650,407)</td>
<td>21 Villages $1,529,563</td>
</tr>
<tr>
<td>FY 16 - JUNE</td>
<td>$(570,786)</td>
<td>21 Villages $2,560,277</td>
</tr>
</tbody>
</table>

ALASKA NATIVE TRIBAL HEALTH CONSORTIUM
Disciplines for Successful Utility Design:

- Civil engineering
- Mechanical engineering
- Electrical engineering
- Structural engineering
Disciplines for Sustainable Utility Design:

- Civil engineering
- Mechanical engineering
- Electrical engineering
- Structural engineering
- Social engineering

If it is worth building, it is worth building to last.
Thank You!
Impact of In-home Piped Water on Rates of Infectious Disease - The Four Village Study

Water Innovations for Healthy Arctic Homes
September 18-21, 2016

Timothy Thomas: ANTHC
Troy Ritter: ANTHC
Dana Bruden: CDC/AIP
Mike Bruce: CDC/AIP
Korie Hickel: ANTHC
Tom Hennessy: CDC/AIP

Alaska Native Tribal Health Consortium
Centers for Disease Control and Prevention/Arctic Investigations Program
Proportion of US homes with complete plumbing (i.e. ‘served’), 1940 - 2010

4,500 homes (~20,250 people) in 43 communities do not have adequate sanitation facilities (in-home piped water and sewage)

Over $685M in unmet need
The small state of Texas
1 gallon = 3.8 liters
Water consumed in relation to the time it takes to collect

Other factors:
- Transport and storage capacity
- Manpower
- Cost

Cairncross S. 1987: The Benefits of Water Supply
No pipes means:

- Storing water; capacity limited: 32 gallon (120L) plastic container
- Conserving water: Many people washing hands in the same water

The Honey bucket
Water-related Infections

• Water-borne
 – Pathogen ingested with water
 • Cholera, other enteric infections
 • Water-quality issue

• Water-washed
 – Person-to-person transmission
 – Lack of water for hygiene
 • Skin infections, trachoma, enteric infections
 • Water quantity issue

* “Drawers of Water”; White, Bradley, White; U of Chicago Press, 1972
The Relationship Between In-Home Water Service and the Risk of Respiratory Tract, Skin, and Gastrointestinal Tract Infections Among Rural Alaska Natives

Hospitalization Rates for “High” and “Low” Water Service Regions, Alaska, 2000-2004

* P < 0.05

Water quality

Water-washed infections

Hennessy et al; AJPH Nov 2008
Prospective studies

• Studies needed to evaluate role of water quantity on water-wash infections;
 – Most have focused on diarrheal illness

• Ryan et al, 2001: Hand washing campaign among US Navy recruits:
 – 45% reduction in outpatient respiratory illness

• Luby et al, 2005: Communities in Karachi, Pakistan randomized to soap and hand washing vs none:
 – 50% reduction in pneumonia, children < 5 years
 – 53% reduction in diarrhea, < 15 years
 – 34% reduction in impetigo, < 15 years
Four village study

• Four villages (A-D) in western Alaska received funding and met requirements for completion of piped water installation 2007/2008

• Opportunity to conduct a prospective cohort study

• Objective:
 – Assess rates of water-wash and water-borne
 • acute gastrointestinal (GI), respiratory and skin infections
 • before and after installation of in-home sanitation services

• Study approved by:
 – CDC, Alaska Area IRB
 – Alaska Native Tribal authorities and participating villages
Participants

• All households in 4 villages invited to participate
• Consented to:
 – Review of medical records from village clinic and regional hospital
 – Recording of who lives in house
“Intervention”:
- Installation of pipes to homes
- Plumbing inside home
- Education/Promotion of water use

- Study started in 2008
- Last village received piped water in April 2010
- Village A: Only half of the homes were piped
Health Outcomes

• Review of electronic medical record
 – Village clinic and hospital visits
 – ICD-9 codes for acute GI, respiratory and skin infections
Water Use

• Pre-pipe installation
 – Households recorded number and volume of water hauls over one month

• Post-pipe installation
 – Monthly water meter readings

• Obtained number of household occupants
 – Calculated liters (gallons)/capita/day
Analysis

- Calculated annual illness event rates for each community for GI, respiratory and skin infections – 3 years before and 3 years after pipes installed
- Excluded visits with same ICD-9 code within 14 days
- Age adjusted rates for post-installation period
- Rates presented overall and by age group
- Generalized estimating equations used to account for repeated observations on same individual over time
4 villages (US 2010 census)

<table>
<thead>
<tr>
<th></th>
<th>Community</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td></td>
<td>627</td>
<td>346</td>
<td>243</td>
<td>187</td>
<td>308M</td>
</tr>
<tr>
<td>No. of Households</td>
<td></td>
<td>150</td>
<td>90</td>
<td>76</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>% Alaska Native/American Indian</td>
<td></td>
<td>95</td>
<td>93</td>
<td>95</td>
<td>91</td>
<td>1.2</td>
</tr>
<tr>
<td>% < 5 yrs of age</td>
<td></td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>12</td>
<td>6.3</td>
</tr>
<tr>
<td>Avg. Persons Per Household</td>
<td></td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>2.6</td>
</tr>
<tr>
<td>Per capita income ($)</td>
<td></td>
<td>13,224</td>
<td>12,501</td>
<td>9,122</td>
<td>15,308</td>
<td>28,051</td>
</tr>
<tr>
<td>% Households below federal poverty threshold</td>
<td></td>
<td>24</td>
<td>28</td>
<td>44</td>
<td>15</td>
<td>14.9</td>
</tr>
<tr>
<td>Study participants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010 Census</td>
<td>1403</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enrolled (% of total)</td>
<td>1048 (75%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outcome data (pre)</td>
<td>1010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outcome data (post)</td>
<td>975</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mean household water use litres/capita/day (l/c/d) pre- and post-installation

<table>
<thead>
<tr>
<th>Community</th>
<th>Pre</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7.2</td>
<td>5.7</td>
</tr>
<tr>
<td>B</td>
<td>5.0</td>
<td>3.5</td>
</tr>
<tr>
<td>C</td>
<td>112.5</td>
<td>96.1</td>
</tr>
<tr>
<td>D</td>
<td>36.1</td>
<td>25.3</td>
</tr>
<tr>
<td>Avg</td>
<td>14.36</td>
<td>12.67</td>
</tr>
</tbody>
</table>

1 gallon = 3.8 litres
10 gallons = 38 litres
20 gallons = 76 litres
Annual Gastrointestinal, Respiratory and Skin infection Rates (per 1000) Pre-Piped Water for All Homes that received Piped Water (n=835)

- GI: 2%
- Resp: 83%
- Skin: 17%
Age adjusted Annual Gastrointestinal, Respiratory and Skin infection Rates (per 1000) Pre- and Post-Piped Water for All Homes Installed with Piped Water

* P < 0.05
Age-adjusted Annual GI, Respiratory and Skin infection Rates (per 1000) Pre- and Post-Piped Water for All Homes Installed with Piped Water by Age Group

<table>
<thead>
<tr>
<th>Percent Δ</th>
<th>GI</th>
<th>Resp</th>
<th>Skin</th>
<th>GI</th>
<th>Resp</th>
<th>Skin</th>
<th>GI</th>
<th>Resp</th>
<th>Skin</th>
<th>GI</th>
<th>Resp</th>
<th>Skin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age group</td>
<td>< 10 yrs</td>
<td>10-19 yrs</td>
<td>20-35 yrs</td>
<td>35-49 yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>24</td>
<td>14</td>
<td>---</td>
<td>13</td>
<td>50</td>
<td>---</td>
<td>13</td>
<td>50</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>50</td>
</tr>
</tbody>
</table>
Summary

• People in self-haul villages in Alaska are using extremely low quantities of water
 – minimum for refugee camp
• Dramatic (and expected) increase in use of water post installation
• Provision of adequate QUANTITY of water results in a decrease in infections:
 – Gastrointestinal: increased hand washing, increased washing of dishes and other surfaces, decreased risk of contamination of hauled water,
 – Respiratory: increased hand washing, cleaning of surfaces.
 – Skin: increased bathing, laundry, hand washing
Impact beyond the four villages

- 4,500 homes in Alaska (est. 20,250 people) without piped water;
 - 5,100 fewer respiratory infections/year
 - 1,300 fewer skin infections/year
 - 400 fewer gastrointestinal infections/year

- Note: We removed visits within 14 days for same infection, so even greater reduction in burden on clinics and hospitals – 9,000 clinic visits/year

- Over 220,000 rural homes in United States lack complete plumbing
Limitations

- Did not observe changes in behavior
 - Post-installation surveys indicated increased bathing and handwashing
- Declines in rates may be due to other factors:
 - Increased immunization
 - Seasonal and yearly variation
 - Other factors
 - Un-piped homes of Village A serve as a control
- Some respiratory infection codes non-specific
 - Analysis with more specific code might demonstrate greater reduction
- Transmission of respiratory infections can also occur through other mechanisms such as droplet spread and thus less likely to be impacted by provision of water
Conclusions

• People in self-haul villages in Alaska are using extremely low quantities of water

• Provision of adequate QUANTITY of water results in a decrease in gastrointestinal, respiratory and skin infections

• Findings reinforce the earlier studies in Alaska

• Funding and innovation required to provide increased quantity of water to rural Alaska villages
Quyana
Apyutengqertuci?
Alaska Department of Environmental Conservation (http://watersewerchallenge.alaska.gov/)

Project to spur worldwide research to develop innovative and cost effective water and sewer systems.

Focus on decentralized water and wastewater treatment, recycling, and water minimization.

Selection of teams to be funded is in progress.
Illness episodes per person-year (ppy)
Villages B-D (all homes received water)

<table>
<thead>
<tr>
<th>Infection type</th>
<th>Period</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (Pre)</td>
<td>Pre</td>
<td>1.81</td>
<td>0.93</td>
<td>1.49</td>
</tr>
<tr>
<td></td>
<td>Post</td>
<td>1.73</td>
<td>0.82</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.03</td>
<td>0.03</td>
<td><0.0001</td>
</tr>
<tr>
<td>Respiratory</td>
<td>Pre</td>
<td>0.27</td>
<td>0.31</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>Post</td>
<td>0.17</td>
<td>0.12</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.0001</td>
<td><0.0001</td>
<td>0.049</td>
</tr>
<tr>
<td>Skin</td>
<td>Pre</td>
<td>0.06</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Post</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.0003</td>
<td>0.57</td>
<td>0.30</td>
</tr>
<tr>
<td>Gastro-intestinal</td>
<td>Pre</td>
<td>0.06</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Post</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.0003</td>
<td>0.57</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Post water introduction rates adjusted by age class
Illness episodes ppy
Village A only

<table>
<thead>
<tr>
<th>Infection type</th>
<th>Period</th>
<th>A (water)</th>
<th>A (no water)</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (Pre)</td>
<td></td>
<td>219</td>
<td>161</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory</td>
<td>Pre</td>
<td>1.68</td>
<td>1.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Post</td>
<td>1.46</td>
<td>1.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.06</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin</td>
<td>Pre</td>
<td>0.44</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Post</td>
<td>0.51</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.18</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastro-intestinal</td>
<td>Pre</td>
<td>0.06</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Post</td>
<td>0.04</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.2</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Post water introduction rates adjusted by age class
Study participants, by village (A-D), and overall.

<table>
<thead>
<tr>
<th></th>
<th>Villages</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>All Homes With Water</td>
</tr>
<tr>
<td>Population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010 Census</td>
<td>627</td>
<td>346</td>
<td>243</td>
<td>187</td>
<td>1087</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1403</td>
</tr>
<tr>
<td>Participants Enrolled (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>405</td>
<td>296</td>
<td>152</td>
<td>179</td>
<td>835</td>
</tr>
<tr>
<td></td>
<td>(65%)</td>
<td>(86%)</td>
<td>(63%)</td>
<td>(96%)</td>
<td>(77%)</td>
</tr>
<tr>
<td></td>
<td>835</td>
<td></td>
<td></td>
<td></td>
<td>1010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(72%)</td>
</tr>
<tr>
<td>Households Enrolled (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>102</td>
<td>71</td>
<td>53</td>
<td>39</td>
<td>217*</td>
</tr>
<tr>
<td></td>
<td>(68%)</td>
<td>(79%)</td>
<td>(70%)</td>
<td>(91%)</td>
<td>(70%)</td>
</tr>
<tr>
<td></td>
<td>217</td>
<td></td>
<td></td>
<td></td>
<td>265</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(74%)</td>
</tr>
</tbody>
</table>

* 48 homes in Village A never received water
Water Infrastructure and Well-being: What Does the Data Tell Us?

Water Innovations for Healthy Arctic Homes Conference
September 19-21, 2016

Melanie O’Gorman and Stephen Penner
University of Winnipeg, MB, CANADA
Water Rights and An Economic Perspective

• We know there is a legal basis – also likely the case that there is an economic basis for such infrastructure.
• Economic analysis is needed to confront government and public apathy towards the issue.
 → Economic counter-argument may persuade the government to act sooner.
• Economics first comes to mind when we consider the costs of water infrastructure and indoor plumbing.
 • $4.7 billion! (Neegan Burnside Ltd. (2011))
 • Economics can also be used to quantify the benefits of providing them.
What are the economic benefits of improved water infrastructure?

• Improved health, including reduced incidence of water- and sanitation-related illness (such as respiratory tract, skin and gastrointestinal tract infections)
 • Averted health care costs
• Fewer absences from work - and increased labour earnings - due to illness.
• Children's attendance at and performance in school
• Environmental benefits of proper sanitation infrastructure, including reduced groundwater contamination, improved soil quality and improved health of aquatic life
• Inherent value of access to safe drinking water
We investigate the relationship between access to safe water and general health conditions in First Nations communities in Canada using 3 datasets:

- The Aboriginal Peoples Survey (2001, 2006) – off-reserve data (n=621,000)
- The Regional Health Survey (2008) – on reserve data (n=11,000)
- St. Theresa Point First Nation data (2016) (n=142)
The Model

\[H_i = \alpha + \beta X_i + \delta W + \varepsilon \]

- \(H_i \) represents a number of health indicators for individual \(i \)
- \(W = 1 \) if household consider water safe to drink, 0 otherwise
- \(X_i \) includes age, sex, household’s income, province, education, employment, alcohol, smoking
On Reserve Analysis

• On-reserve data – from the Regional Health Survey
• Survey administered by First Nations Information Governance Centre (FNIGC) and Regional Partners
• Information for 2002 and 2008

<table>
<thead>
<tr>
<th>Summary Statistics for Dependent Variables</th>
<th>2002</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion in excellent, very good or good health</td>
<td>79.90%</td>
<td>77.20%</td>
</tr>
<tr>
<td>Proportion having stomach and intestinal problems</td>
<td>7.70%</td>
<td>9.90%</td>
</tr>
<tr>
<td>Proportion reporting that they feel depressed (2002) / distressed (2008)</td>
<td>29.90%</td>
<td>50.80%</td>
</tr>
</tbody>
</table>
Impact of Water Source on Self-rated Health

Odds of good health – relative to having water delivered by truck (2008 data)

<table>
<thead>
<tr>
<th>Including explanatory variables:</th>
<th>Age* and Gender*</th>
<th>Age*, Gender* and Defence*</th>
<th>Age*, Gender*, Defence* + Res. School*</th>
<th>Age*, Gender*, Defence* + Res. School*, Good Community Progress*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piped</td>
<td>1.102</td>
<td>1.088</td>
<td>1.107</td>
<td>1.109</td>
</tr>
<tr>
<td>Well</td>
<td>0.830</td>
<td>0.833</td>
<td>0.58</td>
<td>0.862</td>
</tr>
</tbody>
</table>
Impact of Water Source on Gastrointestinal Problems

<table>
<thead>
<tr>
<th>Including explanatory variables</th>
<th>Age*, Gender*</th>
<th>Age*, Gender*, Defence*, Remote</th>
<th>Age*, Gender*, Defence*, Remote, Res School*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piped</td>
<td>0.688</td>
<td>0.816</td>
<td>0.807</td>
</tr>
<tr>
<td>Well</td>
<td>1.021</td>
<td>0.996</td>
<td>0.983</td>
</tr>
</tbody>
</table>

* Independent variables are statistically significant at the 1%, 5% or 10% levels.
Impact of water infrastructure on health costs

• Piped water associated with a roughly 20% decrease in stomach/intestinal problems relative to trucked water.

• The cost of infectious and parasitic diseases in 2008 was estimated at $2.92 billion (Economic Burden of Illness in Canada (2014)).

→ Includes the costs of hospitalization and physician care, drug costs, mortality and morbidity costs

• Benefit of piped water on reserve could be estimated at $583 million for 2008.
Impact of Sanitation on Self-rated Health

Odds of good health for those with sanitation relative to those without sanitation (2008 data)

<table>
<thead>
<tr>
<th>Including explanatory variables:</th>
<th>Age* and Gender*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanitation</td>
<td>1.383</td>
</tr>
</tbody>
</table>

* Independent variable is statistically significant at the 1%, 5% or 10% level.
Impact of Water Source on Mental Health

Odds of distress – relative to having water delivered by truck (2008 data)

<table>
<thead>
<tr>
<th>Including explanatory variables</th>
<th>Piped</th>
<th>Well</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age*, Gender*, Res. School*</td>
<td>0.581</td>
<td>0.840</td>
</tr>
<tr>
<td>Age*, Gender*, Res. School* and Defence*</td>
<td>0.864</td>
<td>0.840</td>
</tr>
<tr>
<td>Age*, Gender*, Remote + Res. School*</td>
<td>0.866</td>
<td>0.823</td>
</tr>
<tr>
<td>Age*, Gender*, Defence* + Res. School*, Good Community Progress*</td>
<td>0.862</td>
<td>0.840</td>
</tr>
</tbody>
</table>

* Independent variables that are statistically significant at the 1%, 5% or 10% levels.
Impact of Running Water on Mental Health

Odds of distress relative to having no running water (2008 data)

<table>
<thead>
<tr>
<th>Including explanatory variables:</th>
<th>Age*, Gender*, Defence</th>
<th>Age*, Gender*, Res. School*</th>
<th>Age*, Gender*, Defence, Small*</th>
<th>Age*, Gender*, Defence, Good Community Progress*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running water</td>
<td>0.601</td>
<td>0.591</td>
<td>0.581</td>
<td>0.587</td>
</tr>
</tbody>
</table>

* Independent variables that are statistically significant at the 1%, 5% or 10% levels.
Current Situation in Manitoba

• Home to many long standing drinking water advisories
• As of July 31, 2016, there were 132 Drinking Water Advisories in effect in 92 First Nations communities across Canada.

<table>
<thead>
<tr>
<th>First Nation</th>
<th>Community</th>
<th>System Name</th>
<th>Type of Advisory</th>
<th>Date Set (YYYY/MM/DD)</th>
<th>Date Revoked (YYYY/MM/DD)</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canupawakpa Dakota</td>
<td>Canupawakpa</td>
<td>Community Complex/DOCFS/DOPS</td>
<td>BWA</td>
<td>2015/06/03</td>
<td>None</td>
<td>101-500 people</td>
</tr>
<tr>
<td>Dakota Tipi</td>
<td>Dakota Tipi</td>
<td>Dakota Tipi Public Water System</td>
<td>BWA</td>
<td>2016/07/22</td>
<td>2016/07/27</td>
<td>101-500 people</td>
</tr>
<tr>
<td>Dakota Plains</td>
<td>Dakota Plains</td>
<td>Dakota Plains Public Water System</td>
<td>BWA</td>
<td>2016/07/21</td>
<td>None</td>
<td>101-500 people</td>
</tr>
<tr>
<td>God's Lake</td>
<td>God's Lake</td>
<td>God's Lake Austin Nazzle Pump House Public Water System</td>
<td>DNC</td>
<td>2014/04/14</td>
<td>None</td>
<td>0-100 people</td>
</tr>
<tr>
<td>Kinonjaoshtegon</td>
<td>Kinonjaoshtegon</td>
<td>Kinonjaoshtegon Public Water System</td>
<td>BWA</td>
<td>2016/07/07</td>
<td>None</td>
<td>0-100 people</td>
</tr>
<tr>
<td>Lake Manitoba</td>
<td>Lake Manitoba</td>
<td>Lake Manitoba Public Water System</td>
<td>BWA</td>
<td>2016/07/22</td>
<td>2016/07/27</td>
<td>1001-5000 people</td>
</tr>
<tr>
<td>Long Plain</td>
<td>Long Plain</td>
<td>Long Plain Public Water System</td>
<td>BWA</td>
<td>2016/07/22</td>
<td>None</td>
<td>101-500 people</td>
</tr>
<tr>
<td>Pauingassi</td>
<td>Pauingassi</td>
<td>Pauingassi Public Water System</td>
<td>BWA</td>
<td>2014/09/24</td>
<td>None</td>
<td>501-1000 people</td>
</tr>
<tr>
<td>Pinaymootang</td>
<td>Fairford</td>
<td>Pinay Gas Bar Semi-Public Water System (Non-Transient)</td>
<td>DNC</td>
<td>2012/08/24</td>
<td>None</td>
<td>unknown</td>
</tr>
<tr>
<td>Pinaymootang</td>
<td>Fairford</td>
<td>Pinaymootang Arena Semi-Public Water System (Non-Transient)</td>
<td>BWA</td>
<td>2015/08/17</td>
<td>None</td>
<td>unknown</td>
</tr>
<tr>
<td>Sandy Bay</td>
<td>Sandy Bay</td>
<td>Sandy Bay Public Water System</td>
<td>BWA</td>
<td>2016/07/21</td>
<td>2016/07/22</td>
<td>5001-10000 people</td>
</tr>
<tr>
<td>Shamattawa</td>
<td>Shamattawa</td>
<td>Shamattawa Public Water System</td>
<td>BWA</td>
<td>2015/11/06</td>
<td>2016/07/11</td>
<td>1001-5000 people</td>
</tr>
<tr>
<td>Wuskwi Sipiik</td>
<td>Indian Birch</td>
<td>Wuskwi Sipiik Public Water System</td>
<td>BWA</td>
<td>2014/04/24</td>
<td>None</td>
<td>0-100 people</td>
</tr>
</tbody>
</table>
St. Theresa Point First Nation

- St. Theresa Point is 610 kilometers Northeast of Winnipeg. The community is accessible by plane and boat in the summer and by winter road in the winter.
- Registered Population: 4187 as of March 2016
- Treaty: Adhesion to Treaty No. 5
- Band No. 298
- Area: Approx. 7,129 Acres
- Chief: Marie A. Wood

(Source: http://www.stpfirstnation.com)
Our Study

• To document daily implications of a lack of funding for water infrastructure. We ask:
 • What are the day-to-day impacts of inadequate infrastructure and indoor plumbing?
 • Are there health implications?
 • Is a lack of proper water infrastructure affecting schooling?
 • Are there still homes that need to be retrofitted?
 • How much are people spending on bottled water/filtration systems?
 • Are there any concerns with cisterns?
• This information may assist with acquiring increased Federal funding for infrastructure.
Access to Water

- 88% have a working flush toilet
- 4.8% use an outhouse
- 10.5% use a slop pail
- 87% have a working shower
- 74.2% have a septic tank

<table>
<thead>
<tr>
<th>Water Source</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe (home connected to main water line)</td>
<td>52.1%</td>
</tr>
<tr>
<td>Water tank (water delivered by truck)</td>
<td>35.2%</td>
</tr>
<tr>
<td>No running water</td>
<td>12.7%</td>
</tr>
</tbody>
</table>
What would you do with the extra time if you weren’t hauling water?

• “I would focus on my family, spending time with them”
• “I would clean my home and yard during the summer”
• “I would relax”
• “I would exercise”
• “I would look for a job”
• “I would play video games”
• “I would watch TV or visit friends”

• Most prominent response – “I would work”
• It was noted that while hauling water is hard work, it is an important cultural activity
Water and Health

- 30% of individuals say they’ve missed work or school because they or a family member was sick from a waterborne illness
- 18% say they’ve missed school or work for another water-related reason
- 33.3% feel chlorine is bad for their health

<table>
<thead>
<tr>
<th>Self-rated health status</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>13.5%</td>
</tr>
<tr>
<td>Very Good</td>
<td>12.7%</td>
</tr>
<tr>
<td>Good</td>
<td>43.7%</td>
</tr>
<tr>
<td>Fair</td>
<td>27.0%</td>
</tr>
<tr>
<td>Poor</td>
<td>11.9%</td>
</tr>
</tbody>
</table>
Water and Health continued

- Methicillin-resistant Staphylococcus aureus (MRSA)
- Impetigo
- Lice
- Boils

<table>
<thead>
<tr>
<th>How often is your water monitored?</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every few months</td>
<td>24.8%</td>
</tr>
<tr>
<td>Twice a year</td>
<td>5.7%</td>
</tr>
<tr>
<td>Once a year</td>
<td>7.6%</td>
</tr>
<tr>
<td>Less than once a year</td>
<td>61.9%</td>
</tr>
</tbody>
</table>
Impact on Schooling

“The water situation does make a difference when you’re talking about the quality of life of the students”

• Water pressure – at the school – very unpredictable.
 • It’ll shut off sometimes for an hour or so
 • School is at the end of the line
• Skating rink – can’t flood it – so it’s not functioning
• Some students go to the washroom every hour – they have diarrhea
 • But they’re still managing to come to class
• If water isn’t working, school is shut down – this happens a lot
• Some students don’t come to school because they haven’t been able to shower or do laundry
• Eye wash stations don’t work – science classes can’t do experiments
• If there is a fire – and everyone is using water so water pressure is low – it would be a disaster
• “Water has always been an issue”
What, in your view, is most important for improving the water/sanitation situation in your community?

- Most prominent answer - for all to be directly connected to main water line – 38% of respondents indicated this.
- 29% of individuals indicated a general desire for clean water.
- 10% of individuals demanded more water trucks.
- Other responses:
 - “I would like water to run in pipelines in each home for convenience like washing clothes or daily shower.”
 - “Water filtration systems.”
 - “Need more trained workers to work at the plant.”
 - “Community education on proper water use.”
What, in your view, is most important for improving the water/sanitation situation in your community?

• “Improved water pressure”
• “Water that I could trust so I don’t need to boil it”
• “More retrofitting of homes”
• “Hooked to main water line instead of worrying about saving every last drop of water”
• “More frequent testing of water”
• “If everyone got water from the main line – how would things change?”
The View from Northern Quebec: Different Treaties/ Different Reality

• Reality on the ground is that water infrastructure in Eeyou Istchee is overseen by the Capital Works Department of Cree Nation Government (CNG).
• Three major Agreements: James Bay Northern Quebec Agreement (JBNQA), Les Paix des Braves, and New Relationship Agreement (NRA).
• Water infrastructure is funded through NRA.
• The NRA has a life-span of 50 years and is funded by the Governments of Canada and Quebec.
Eeyous Istchee Water Infrastructure—Modern and Service oriented

Left to right Water Treatment Facilities in Nemaska, Wemindji & Whapmagoostui
$ spent = H_2O Security

• CNG has spent $165,763,703 since 2008 setting up and maintaining healthy water infrastructure.
Conclusions

• Absence of water infrastructure/indoor plumbing shows a statistically significant association with measures of health
 • Gastrointestinal problems, self-rated health, mental health
 • Largest impact appears to be on mental health
• St. Theresa Point case study demonstrates that effects of inadequate water facilities impact more than health
• Success in Northern Quebec indicate there are lessons to be learned!
Thank you

• Ian Clara of the Research Data Centre for assistance with the APS study
• Leona Star and Leanne Gillis of Nanaandawewigamig for assistance with the Manitoba RHS study
• Maria Santos of the FNIGC for assistance with the national RHS study
• Helen Fallding of the CHRR for assistance with all aspects of this project
• Shianne McKay and Morgan Vespa of the Centre for Indigenous Environmental Resources and Jack Wood of St. Theresa Point First Nation for assistance with planning the St. Theresa Point study
• Focus group and survey participants for their time and insight
• Pamela Mason for help with catering and transportation
• St. Theresa Point Chief and Council for spearheading the survey
Water Quality and Health in Northern Canada: Contamination of Stored Drinking Water and Associations with Acute Gastrointestinal Illness in an Inuit Community

Carlee Wright

WIHAAH| September 2016
Inuit communities in the Canadian Arctic have one of the highest self-reported incidence rates of Acute gastrointestinal illness (AGI) in the world.

Concerns over drinking water supply

- Safety of municipal tap water
- Water is a potential source of AGI
Rigolet, Nunatsiavut
Background: Drinking Water in Rigolet

Tap water

Purchased water

Brook water

ADWS water
Jan 2014
Background: Drinking Water in Rigolet

- ADWS: Residents collect own water
- Community member identified research question
 - Can storing water have negative health impacts?
Goal & Objectives

Goal
Understand household stored drinking water and its potential associations with self-reported AGI in Rigolet, Nunatsiavut

Objectives:
1. Describe drinking water sources and water-related practices, and how they differ across demographic groups
2. Determine the prevalence of *E. coli* and total coliforms in stored water containers, and identify risk factors for secondary water contamination; and
3. Examine potential associations between AGI and environmental and behavioural risk factors, *E. coli*, and total coliform levels in containers.
June 2014: Retrospective, cross-sectional census survey

Questionnaire

- Risk factors for secondary water contamination
- Water-related risk factors for AGI
- Self-reported AGI

Water Sampling

- Sampled all identified water storage containers
- Analyzed for total coliforms & *E. coli*
- Data on container characteristics

Response rate: 92.8% (n=246)
Results: Drinking Water Use

- ADWS primary or secondary water source for 74.8% of people (95% CI 68.9%-79.9%)
Results: Total Coliforms in Stored Water

- Over 90% of households had stored water
- Samples from 104 containers
 - Total coliforms: 25.2% (95% CI 17.7%-34.7%)
 - *E. coli*: One sample positive
- 67.0% (95% CI 57.0%-75.6%) cleaned once/month or less
Results: Total Coliforms in Stored Water

- **Dippers**: Odds of total coliform presence in containers with dippers 13.4 times greater than odds for containers where no dipper was used (p=0.000, 95% CI 3.81 – 47.06)

- **Transfer devices**: Odds of total coliform presence 3.4 times greater when transfer device used to collect water, compared to if water was collected directly into container (p=0.028, 95% CI 1.15 – 11.65)
Results: Acute Gastrointestinal Illness

- Annual incidence rate 2.43 cases/person-year
 - 42 cases
 - 4 week period prevalence 17.2% (95% CI 12.9-22.5%)

- No significant water-related risk factors in June 2014
Discussion

- ADWS recently installed & widely used in community
 - Necessitates storage of drinking water
 - Infrequent cleaning \Rightarrow microbial regrowth
- Total coliforms detected in large proportion of samples
 - Recontamination after collection \Rightarrow transfer devices
 - Lack of chlorine in ADWS water
Discussion

- Incidence rate of AGI similar to past research → significantly higher than in other studies in southern Canada & globally
 - No significant water-related risk factors
- Study design
 - Limitations of total coliforms as fecal indicators
 - AGI has many causes and exposure routes
Conclusions & Next Steps

- Various factors could contribute to high rates of AGI
- Minimize possible exposure to waterborne pathogens through simple interventions
Acknowledgements

• Rigolet Inuit Community Government
• Charlie Flowers, & Allan Gordon
• Rob Jamieson & Lisbeth Truelstrup-Hansen
• IK-Adapt
• Indigenous Health Adaptation to Climate Change (IHACC) Research Team
Thank You!

Water Innovations for Health Arctic Homes, Anchorage, AK.
September 18th-21st, 2016
Vulnerability of northern water supply lakes to changing climate and Demand

Michael Bakaic
York University
How much water do we have?
Factors

- Arctic amplification
- Fluctuating Extremes
- Higher evaporative stress
- Lake Ice
- Length Summer season
- Freeze-up

Climate
Factors

- Arctic engineering
 - Permafrost
 - Longevity, O&M
 - Costly Engineered Solutions
 - Human Capacity

Climate

Infrastructure
Factors

- Growing Demand
 - Population growth
 - Development
 - Distribution
 - Lifestyle improvements

Climate

Infrastructure

Demand
Factors

- Climate
 - Natural trajectory of water
- Demand
 - Reservoirs
 - Dams
 - Supplemental Supply
Water Resource Assessment

Answers Needed:
- Planning & Management
- Emergency Prep
- Water Safety
- Funding Priority

Hydrologic Modeling
- Simulations of climate and demand scenarios
- Proposed infrastructure
- System evaluation
- Climate adaptation

...... account for the factors
Water Resource Assessment

- Rankin Inlet and Iqaluit, NU
- High development pressures
- Diminishing supply
- Multiple proposed solutions

For example...
Process

1. Produce Climate & Demand Forecasts

2. Hydrological Simulation

3. Analysis Software
Climate Forecasts

- 3 Climate Parameters
- Based on 30yr climate records
- High/Norm/Low levels
- Generate 27 climate forecast scenarios

Air Temp

Snowfall

Rainfall
Demand Forecasts

POPULATION GROWTH
- NU Stats Bureau projections
- High/Medium/Low

WATER CONSUMPTION
- NWB Annual Reports
- High/Medium/Low
Simulation & Calibration

- Inputs:
 - Reservoir bathymetry
 - Watershed area
 - Dam/spillway configuration
 - Geological characteristics
 - Replenishment/reservoir specs
 - 81 combos of Climate & Demand

- Calibrated with WSC lake level gauge
Results

Lake Geraldine - Iqaluit

- 3 colour areas of Demand
- 27 Climate scenarios each color
- High Consumption: Shortages in 2024
Results

Lake Nipissar – Rankin Inlet

- **Current** Consumption: Shortages in **2023**
- Results include *seasonal replenishment pipeline*
Planning & Management Analyses

Lake Geraldine - Iqaluit
- Climate anomalies: 33yr precip low
- Shortages in 2018

Lake Nipissar – Rankin Inlet
- Climate anomalies, pumping interruption, extreme consumptions
- Shortages in 2021
Protocol can easily be expanded to evaluate infrastructure proposals

Forecasting method reveals impact of Apex replenishment on Iqaluit water supply
Over-Winter Reservoir

Protocol can easily be expanded to evaluate infrastructure proposals

- Scenario 1: 105,000m³
- Scenario 2: 210,000m³
- Scenario 3: 500,000m³
Water Strategy Development

- Full suite of preliminary supply forecasts for all communities
- Deploy to evaluate current infrastructure proposals
- Advance understanding of Water Security for Northern regions
- Establish real-time monitoring & forecasting
Questions to YOU

– When was the last time your resources were assessed?
– How will climate change impact your water supply?

– How long will your supply last?
– Let us work together!

Michael Bakaic
mbakaic@yorku.ca
York University
References

Vulnerability of fresh water supply in Arctic Canada

Andrew S. Medeiros* and Michael Bakaic
York University, Department of Geography
Environmental Change and Arctic freshwater systems
Water Security
Water Security

Survey of Residents determined:

- Residents often drink untreated flowing water sources
 - Traditional Ecological Knowledge of water borne pathogens
 - Distrust of municipal water supply

- Concerns over **water quantity**
 - Demand exceeds long-term supply
 - Households often run out of water
 - Knowledgeable about municipal plans for water development

- Concerns over **water quality**
 - Identification of several areas residents would not consider drinking water from
Water Quantity Issues
Water Risk Assessment

• **Problem**: Climate stress and increased populations causing widespread risk to water infrastructure and supply

Use estimates of water source volumes to:

→ Calculate input vs output
→ Determine water-balances
→ Model risk assessment scenarios
→ Provide adaptation recommendations
Indicators: Isotopes

Lake-Water isotope Tracers

- $\delta^{18}\text{O}, \delta^2\text{H}$
 - Monitoring of Lake Water Balances
 - Hydrologic pathways

Surface Waters - distribution controlled by input waters and vapour loss

Precipitation - distribution controlled by temperature and rain-out effects

$\delta^L\text{W}$

δ^P

δ^SSL

GMWL

LEL
Evaporative Stress

Churchill, Manitoba
Vulnerability

Running Out of Water

Rankin Inlet, Nunavut
Supplemental Water Supply?
Char River outlet - 2007
Char River outlet - 2006

- Cost: ~$5 million
- Extension of supply: 5 years
Alternative Water Supply?
The Apex River, Iqaluit, Nunavut

- Current Proposal
- Estimated cost: 6.4 million
Hydrologic Modelling
Water Balance Modelling

![Graph showing water balance with isotopes and different data points labeled.

Axes:
- 2H (%o VSMOW) on the y-axis
- $\delta^{18}O$ (%o VSMOW) on the x-axis

Points:
- July 19
- Aug 11
- Aug 18
- Aug 25
- June 2
- June 30

Legends:
- Red circles: Apex River & Tributaries
- Blue circles: Rain
- Gray squares: Snowmelt

Lines:
- GMWL (Global Meteoric Water Line)
- LEL
- Pan δ_{SSL}
- δ_P

The graph illustrates the relationship between 2H and $\delta^{18}O$ across different dates and types of water sources.
Summer Rainfall
Isotope Hydrology: Seasonal Pattern

Iqaluit, Nunavut 2014

Positive

Negative
What do we find?

- Supplemental Water replenishment from local river provides 3-5 years worth of water
- Cost / Benefit question
- Alternative sources of water?
Water Risk Assessment

- **Problem**: Evaporative stress and increased populations causing widespread risk to water infrastructure and supply

Use estimates of water source volumes to:
- Calculate input vs output
- Determine water-balances
- Model risk assessment scenarios
- Provide adaptation recommendations

Government has no estimates of water volumes for 19 of 25 Nunavut communities
Solution: Basic Bathymetric Surveys and Water Sampling

- Simple measurements of depth
- Collection of water and sediment
- Isotope analysis + Hydrologic modelling
- Estimated cost per community: ~$10-15,000

→ Minor costs but not a funding ‘priority’
Freshwater Policy?

- Nunavut Waters and Nunavut Surface Rights Tribunal Act – 2014
- Municipalities own and operate water infrastructure
- Maintenance and management from Department of Community and Governmental Affairs
- Permits and licensing from Nunavut Water Board
- No territorial freshwater management policy framework exists
Freshwater Policy

- Severe need to bring various government and non-government stakeholders together to address lack of freshwater policy or management
- Government of Nunavut has no person(s) in charge of freshwater policy or planning
- Climate change adaptation group has no freshwater adaptation strategy
- Water Security is as important as food security
Thank you!

- Undergraduate Honours Thesis Students: Cait Carew, Jessica Peters, Heather Haight, Anthony Todd
- Field Assistance: Ryan Scott, Chris Luszczek, Ray Biastoch
- University of Waterloo – Environmental Isotope Lab
- Northern Partners: Nunavut Research Institute, Nunavut Arctic College
- Collaborations: Suzanne Tank, Brent Wolfe, Roland Hall, Roberto Quinlan, Marc Amyot, Gwyneth MacMillan, Konrad Gajewski, Sarah Finkelstein, David Porinchu, and many many others..
- Funding: NSERC, PCSP, ACUNS / The W. Garfield Weston Foundation
Freshwater Policy
Climate Change and Community Water Security
Emerging Challenges and Strategies

WIHAH – September 19 & 20 2016

Mike Brubaker
Alaska Native Tribal Health Consortium
Alaska Statewide
12-Month Running Mean Temperature, 1926-2016

Data source: NOAA/NCEI
updated through Aug 2016

Courtesy Rick Thoman
Comparing these two periods, 1961 – 1990, and 2010 – 2012, precipitation has increased in nine of twelve months. Biggest change occurring in summer and fall.
How does climate change affect human health?

- Disease
- Food Security
- Behavioral Health
- Injury
- Water Security

Center for Climate and Health
How does climate change affect water security?

Damage or disruption to water infrastructure.

Changes to water source quality or availability.
Thaw related service line damage: Northwest Arctic Region - Selawik
Thaw related septic system damage: Northwest Arctic Region - Selawik
What are some drivers of lake change?

Decrease in snow pack.

Decrease in rainfall.

High summer temperatures.

Erosion

Thawing permafrost
Lake Drying: North Slope Region – Deadhorse
(Cause - permafrost thaw)
Lake Drying: Norton Sound Region – Nome
Cause - permafrost thaw, drought

Source: LEO Network. Photo by Mike Sloan
Lake Drying: Interior Region - Fort Yukon
Cause - permafrost thaw(?) and drought
Lake Draining: Yukon / Kuskokwim Region – Kwigillingok
Cause - permafrost thaw (?) and erosion

Photo – Anchorage Daily News
Lake Draining: North Slope Region – Point Lay
Cause: permafrost thaw and erosion
Reservoir Drying

Southcentral Region – Nanwalek

Source: LEO Network. Photo by Nancy Yeaton
River Drying. Southcentral Region - Seldovia

September 2015
Reservoir Drying. Southeast Region Saxman
Cause – low rainfall and high temperatures

Over 141 inches annually.

July 2015
The City and Borough of Juneau posted a notice on its website Friday asking residents to begin conserving water due to lower-than-usual supplies for this time of year. Reservoir levels are standing at about 30 percent of usual capacity due to a string of high temperatures and low precipitation.
With reservoir low, Kodiak asks citizens to conserve water

By Kayla Desroches, KMXT - Kodiak - September 28, 2015

It’s been a dry summer for Kodiak, which has lowered the Monashka reservoir. According to Rick Thoman, the climate science and services manager for the Alaska region of the National Weather Service, it’s one of the driest seasons in Kodiak history. “Kodiak since June 1 has received just over ten inches of rain. That’s just about half of normal for that time and is the second lowest of record...
What are some of the indirect effects of low water?

Increase in temperature.

Decrease in available.

Increased growth of algae and other aquatic plants.

Lower water quality.

Increased cost of treatment.
Reservoir algae growth. Bering Strait Region - Shishmaref

Photo Courtesy Mike Black
Filter Changes/Day - July 2007 and July 2008
Point Hope, Alaska

Photo: Mike Brubaker
What are some drivers of river change?

Decrease in snow pack.

High summer air temperatures.

Thawing permafrost

Erosion

Extreme rain or drought

Rapid plant growth

Emergence of new wildlife
Disruption of Barge Service Northwest Region
Cause: Low water level.
Fuel delivery - Noatak.
River freeze up - Arctic Village, Alaska

Cause – low water Chandlar River
River thaw feature and erosion, Interior – Chandlar River

August 2016.
River thaw feature and erosion, Northwest Arctic - Selawik River
Community water well relocation Interior Region - Venetie
Cause: Erosion
High turbidity: Norton Sound Region - Golovin.
Cause - permafrost thaw and erosion
Bank thaw and erosion: Northwest Arctic – Kivalina Cause - permafrost thaw and erosion
River bank thaw and erosion: Northwest Arctic - Kivalina, Alaska
First evidence of beaver in Wulik River: Northwest Region - Kivalina
Water (Source) Security – Take Home

Alaska - less frozen and resilient and more thawing and fragile.

Surface water sources are climate vulnerable.

Lakes are changing and in some cases drying.

Rivers are becoming wider, shallower, and dirtier.

Both engineered and traditional sources are impacted.

The effects are statewide and have a variety of drivers.

Water source security can no longer be taken for granted.
Survey on Water and Sanitation in the Arctic: Access, Disease Surveillance, and Threats from Climate Change

Jonathan M. Bressler, MPH1,2

Thomas W. Hennessy, MD, MPH3,4

1 Section of Epidemiology, Division of Public Health, Alaska Department of Health and Social Services, Anchorage, AK, USA

2 Applied Epidemiology Fellow, Council of State and Territorial Epidemiologists, Atlanta, GA, USA

3 Arctic Investigations Program, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention (CDC), Anchorage, AK, USA

4 Arctic Human Health Experts Group, Sustainable Development Working Group, Arctic Council
Sustainable Development Goal 6: Ensure access to water and sanitation for all

- **Millennium Development Goal #7: Ensure environmental sustainability**
 - Target 7.C: Halve proportion of world population without improved drinking water and basic sanitation by 2015.
 - Accomplished goal in 2010.

- **2010 UN General Assembly Resolution 64/292:**
 1. Recognized access to safe and clean drinking water as a human right.
 2. Called upon States and international organizations to provide resources and cooperate to achieve safe drinking water and sanitation for all.

- **Sustainable Development Goal #6: Ensure access to water and sanitation for all**
 - By 2030...
 - achieve universal access to safe and affordable drinking water for all.
 - achieve access to adequate sanitation and hygiene for all.
 - implement water resource management at all levels, and through trans-boundary cooperation.
 - Support and strengthen the participation of local communities in improving water and sanitation management.
Water and Sanitation in the Arctic

- **Survey of Living Conditions in the Arctic (SLiCA), 2001–2006**

 ![Bar chart](chart.png)

 In-home water service in the Arctic by sample community

 - Hot running water as low as 49% (Central Chukotka)
 - Cold running water as low as 56% (Northern Greenland)
 - Water that is sometimes unsafe to drink as high as 86% (Nunavut)

Poppel B, Kruse J. Survey of living conditions in the Arctic.
Water and Sanitation in the Arctic

- **UN National Human Development Reports 2006/2007***

![Map showing the proportion of homes in Arctic Russian regions with sewerage installation](image)

Proportion of homes in Arctic Russian regions with sewerage installation

- Some areas of Russia estimated to have under 25% of homes with household sewerage. (Evenkia)

Water and Sanitation in the Arctic

- *Healthy Alaskans 2020* estimates that in 2010, **78% of rural Alaskan homes had water and sewer service.**
 - Among all Alaskan homes, 95.6% have complete plumbing.
 - Among all U.S. homes, 99.6% have complete plumbing.

- Access to water and sewer is still inadequate, and SDG #6 for access to water and sewer service for all has not been achieved in the Arctic region.

- Higher water service has been associated with lower rates of water-washed disease in the Arctic, such as skin and respiratory tract infections.
 2. US Census, American Community Survey.
Climate Change Threats to Water and Sanitation

• Climate change poses threats to water and sanitation.
 • Accelerated erosion and increased storm intensity damages infrastructure.¹
 • Permafrost melting and drainage of tundra ponds have caused loss of source water.²
 • Saltwater intrusion into wells have resulted from rising sea levels.²
 • Similar events have likely gone undocumented.

• Resources must be secured to maintain and improve water and sanitation services for the health of Arctic residents.

Assessing the Current Status of Water and Sanitation in the Arctic

• Arctic Council project:
 • “Improving Health through Safe and Affordable Access to Household Running Water and Sewer in Arctic and Sub-Arctic communities.”

• Objectives:
 a) Promote innovations in water and sewer technologies and services provision.
 b) Document the status of water and sewer service and associated health outcomes.
 c) Describe climate-related vulnerabilities and adaptation strategies for community water and sewer systems and source water protection.

• Last two objectives addressed in Survey on Water and Sanitation in the Arctic: https://www.surveymonkey.com/r/arctic_council_water_sanitation
Methods

• Three-part survey:
 • Access to water and sanitation services
 • Water- and sanitation-related disease surveillance
 • Climate or environmental changes affecting water and sanitation

• Distributed survey to professionals in health, water and sanitation; government authorities; and interested residents in the Arctic nations.

• Survey is open through September 2016.
Preliminary Results: Respondent Profile

Number of complete responses, by country and survey section

<table>
<thead>
<tr>
<th>Section</th>
<th>Canada</th>
<th>Finland</th>
<th>Greenland</th>
<th>Iceland</th>
<th>Norway</th>
<th>Sweden</th>
<th>Russia</th>
<th>US (Alaska)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water & Sanitation</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Disease Surveillance</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Climate</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>

Number of complete responses, by country and professional affiliation

<table>
<thead>
<tr>
<th>Affiliation</th>
<th>Canada</th>
<th>Finland</th>
<th>Greenland</th>
<th>Iceland</th>
<th>Norway</th>
<th>Sweden</th>
<th>Russia</th>
<th>US (Alaska)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>National government authority</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Local government authority</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Tribal or indigenous organization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Community member</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Other expert or interested party</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
Preliminary Results: Water & Sanitation

• Most respondents reported >90% access to improved water and sanitation in homes, schools, and health centers in their area.
 • However, responses describe mainly large national or provincial populations, while some small towns and villages have no services.
 • Responses are unreliable due to approximation, likely misunderstanding of definitions, and lack of empirical evidence provided for data.
Preliminary Results: Water & Sanitation

Water service used by most of population, according to respondents

<table>
<thead>
<tr>
<th></th>
<th>Canada</th>
<th>Finland</th>
<th>Greenland</th>
<th>Iceland</th>
<th>Norway</th>
<th>Sweden</th>
<th>US (Alaska)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total respondents</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>Centralized piped distribution</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>Vehicle or self-haul with plumbing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Self-haul without plumbing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Private well</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Sanitation service used by most of population according to respondents

<table>
<thead>
<tr>
<th></th>
<th>Canada</th>
<th>Finland</th>
<th>Greenland</th>
<th>Iceland</th>
<th>Norway</th>
<th>Sweden</th>
<th>US (Alaska)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>Centralized piped distribution</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Vehicle or self-haul with plumbing</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Private septic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Pit latrine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Composting, electric, or chemical toilet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honey bucket</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Preliminary Results: Water & Sanitation

Water quantity and wastewater treatment standards according to respondents

<table>
<thead>
<tr>
<th>Country</th>
<th>Water quantity standard</th>
<th>Is quantity standard met?</th>
<th>Are there a wastewater treatment standards?</th>
<th>Are treatment standards met?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>90 L/p trucked 225-250 L/p piped</td>
<td>Yes (2)</td>
<td>Yes (3)</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No (2)</td>
<td>No (1)</td>
<td>No (4)</td>
</tr>
<tr>
<td>Finland</td>
<td>120 L/p</td>
<td>Yes (2)</td>
<td>Yes (2)</td>
<td>Yes (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Greenland</td>
<td>No standard</td>
<td>N/A</td>
<td>No response</td>
<td>N/A</td>
</tr>
<tr>
<td>Iceland</td>
<td>No standard</td>
<td>N/A</td>
<td>Yes (1)</td>
<td>Yes (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Norway</td>
<td>200 L/p</td>
<td>Yes (1)</td>
<td>Yes (1)</td>
<td>Yes (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Sweden</td>
<td>No standard</td>
<td>N/A</td>
<td>Yes (2)</td>
<td>Yes (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>US (Alaska)</td>
<td>Responses varied</td>
<td>Yes (43)</td>
<td>Yes (20)</td>
<td>Yes (12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No (6)</td>
<td>No (3)</td>
<td>No (7)</td>
</tr>
</tbody>
</table>

L/p = liters per person per day
Notable Water & Sanitation Information

• Canada-Nunavut Agreement on the Transfer of Federal Gas Tax Revenues under the New Deal for Cities and Communities 2005 – 2015
 • “The infrastructure found in the majority of communities in Nunavut are beyond their useful lifecycle and many are inefficient, expensive to operate, and potentially hazardous to the community and the environment. These deficiencies are particularly evident in critical components such as water, wastewater, and solid waste infrastructure, where renovations/repairs are desperately needed to keep pace with expanding communities.”

• Northwest Territories 2013 Water Quality Summary
 • Annual summary of water quality in public systems throughout province
Notable Water & Sanitation Information

 - Only in municipalities, not rural areas
Preliminary Results: Disease Surveillance

- Most water-borne infections are reported to public health authorities, but few water-washed infections are reported.
 - Skin and lower respiratory tract infections rarely reportable.
- Responses vary on which specific infections are reported.
 - Influenza and pneumonias infections reportable in Alaska and Canada.
 - Influenza not reported in Sweden unless H1N1.

- Other existing data systems according to respondents
 - Population registries in Greenland, Iceland, Sweden and United States
 - National patient registries in Greenland and Sweden
 - Electronic health records in Canada, Greenland, Iceland, Sweden and United States
 - Other data systems in Norway (MSIS; outbreak alert) and Sweden (emergency calls; syndromic surveillance)
Preliminary Results: Climate Change

- *Decreases in source water quantity* were reported in Alaska, Canada, Greenland and Sweden.

<table>
<thead>
<tr>
<th>Respondents reporting water quantity decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total respondents</td>
</tr>
<tr>
<td>Decrease in groundwater supply</td>
</tr>
<tr>
<td>Loss or decrease of tundra pond water or other surface water</td>
</tr>
<tr>
<td>Change in the course of a river that reduced access to water</td>
</tr>
<tr>
<td>Other decrease in quantity or volume not described here</td>
</tr>
<tr>
<td>No decrease in water quantity has been observed</td>
</tr>
<tr>
<td>Respondent was unaware of any decreases in water quantity</td>
</tr>
</tbody>
</table>
Preliminary Results: Climate Change

- **Decreases in source water quality** were reported in Alaska, Canada, Greenland, Norway and Sweden.

<table>
<thead>
<tr>
<th>Respondents reporting water quality decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total respondents</td>
</tr>
<tr>
<td>Increased salt content, dissolved solids, or other contaminants in groundwater</td>
</tr>
<tr>
<td>Flooding of coastal areas by storms, causing contamination of surface water with seawater</td>
</tr>
<tr>
<td>Increased salt and bromide content in river intakes due to sea-level rise</td>
</tr>
<tr>
<td>Excessive algal, bacterial, fungal, insect, or other biological growth in source water</td>
</tr>
<tr>
<td>Other decrease in quality not described here</td>
</tr>
<tr>
<td>No decrease in water quality has been observed</td>
</tr>
<tr>
<td>Respondent was unaware of any decreases in water quality</td>
</tr>
</tbody>
</table>

- **Other decreases in water quality** described:
 - Change in water color
Preliminary Results: Climate Change

- **Damage to water or sanitation infrastructure** was reported in Alaska, Canada, Greenland, Norway and Sweden.

<table>
<thead>
<tr>
<th>Damage description</th>
<th>Respondents reporting infrastructure damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total respondents</td>
<td>20</td>
</tr>
<tr>
<td>Damage to infrastructure due to high overland water flow (runoff) after intense storms</td>
<td>5</td>
</tr>
<tr>
<td>Damage to infrastructure from riverbank erosion after intense rainstorms.</td>
<td>6</td>
</tr>
<tr>
<td>Damage to structure founded on frozen soil due to thawing permafrost</td>
<td>8</td>
</tr>
<tr>
<td>Damage to other water infrastructure due to event(s) not described here.</td>
<td>3</td>
</tr>
<tr>
<td>No damage to water infrastructure has occurred.</td>
<td>0</td>
</tr>
<tr>
<td>Responded was unaware of any damage to water infrastructure.</td>
<td>8</td>
</tr>
</tbody>
</table>
Preliminary Results: Climate Change

• Other infrastructure damage described:
 • Leaking water reservoir due to berm instability (thawing). (Nunavut)
 • Describe flooding, erosion, water quality and quantity decreases, infrastructure damage, health effects, etc.
 • Failure of buried water distribution and collection systems, requiring temporary installation of tanks until an above-ground system can be built. (Alaska)
 • Dam safety incidents due to power cuts during intense storms, land collapse, rising water level. (Finland)
Preliminary Results: Climate Change

- **Climate-related maintenance issues** were reported in Alaska, Canada, Greenland, Norway and Sweden.

<table>
<thead>
<tr>
<th>Respondents reporting maintenance issues</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total respondents</td>
<td></td>
</tr>
<tr>
<td>Use of dirty, contaminated, or unsafe water due to high cost of repairing or replacing damaged structures or contaminated water sources.</td>
<td>4</td>
</tr>
<tr>
<td>Increase in cost of operations and maintenance.</td>
<td>9</td>
</tr>
<tr>
<td>Other operations or maintenance issue(s) caused by climate change not described here.</td>
<td>5</td>
</tr>
<tr>
<td>No climate- or environment-related maintenance issues have occurred.</td>
<td>0</td>
</tr>
<tr>
<td>Respondent was unaware of any climate- or environment-related maintenance issues.</td>
<td>7</td>
</tr>
</tbody>
</table>
Preliminary Results: Climate Change

• Other maintenance issues described:
 • Need for installation of flexible service lines to minimize damage following buildings shifting due to freeze/thaw cycles and melting permafrost. (Alaska)
 • Stalling or incompletion of infrastructure projects due to lack of funding. (Alaska)
Preliminary Results: Climate Change

- **Climate change has affected planning** of infrastructure in Alaska, Canada, Greenland, Norway and Sweden.

- Examples of planning changes due to climate change threats:
 - Lining reservoirs since relying on permafrost is no longer realistic. (Nunavut)
 - Chemical and UV treatment upgrades. (Sweden)
 - Protective walls in treatment plant to prevent contamination from floods. (Sweden)
 - Some communities to receive funding for decentralized in-home water and sanitation systems to ease relocation following erosion, etc. (Alaska)
 - Planned research to address climate change-caused infrastructure problems. (Greenland)
 - Climate change adaptation plans for some countries.
Preliminary Results: Climate Change

- **Water treatment has been affected** in Alaska, Canada, Greenland, Norway and Sweden.

<table>
<thead>
<tr>
<th>Total respondents</th>
<th>Respondents reporting effects on water treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rise in bromide concentration requiring treatment of water source.</td>
<td>1</td>
</tr>
<tr>
<td>More difficult to appropriately treat water after increase in turbidity, pathogens, or natural contaminants in the water.</td>
<td>6</td>
</tr>
<tr>
<td>More frequent or severe algal blooms affecting water treatment.</td>
<td>0</td>
</tr>
<tr>
<td>Other treatment issue(s) not described here.</td>
<td>5</td>
</tr>
<tr>
<td>Water treatment has not been affected by climate change.</td>
<td>2</td>
</tr>
<tr>
<td>Respondent was unaware if water treatment had been affected by climate change.</td>
<td>8</td>
</tr>
</tbody>
</table>
Preliminary Results: Climate Change

- Other treatment issues described:
 - Storm water entry into sewage plants reduces the effectiveness of water treatment. (Norway)
 - More rapid clogging of filters. (Alaska)
 - Greater organic loads in source water requires stronger chemical treatment, resulting in more disinfection byproducts. (Alaska)
Preliminary Results: Climate Change

- Respondent from Iceland reported only being **unaware of climate-related changes** to water and sanitation infrastructure.
 - Quantity or quality decreases and damage might have occurred without respondent’s knowledge.
 - Other climate-related incidents have likely occurred in all Arctic nations that have not been noted.

- No responses on climate change were received from Russia or Finland.
Preliminary Conclusions

• The picture of water and sanitation access in the Arctic is incomplete, but clearly Sustainable Development Goal #6 has not yet been achieved in many areas of the circumpolar north.

• Reportable water- and sanitation-related diseases are not consistent across the region.
 • *Water-borne* infections are usually reportable to public health officials, while few *water-washed* infections are.

• Climate change has caused decreases in water quality and quantity, infrastructure damage, maintenance and treatment issues, and has affected planning in almost all Arctic countries.

• As remote communities build infrastructure to increase access to water and sanitation, they must also address how climate change may damage or burden that infrastructure.
Limitations

• Survey not comprehensive.
• Reported numbers in the survey are unconfirmed, and some responses and data for the same areas are discordant.
• Unclear definitions may affect responses.

However...
• Survey results clearly show that areas of very low water and sanitation service exist in the Arctic.
• Responses indicate previously unrecognized climate-related issues that will affect water and sanitation access in the future.
• A comprehensive picture of water and sanitation issues in the Arctic is needed.
Lessons Learned

• The amount of numerical water and sanitation data requested was excessive and mostly uninformative.
 • Few respondents had access to empirical data on number served with water/sewer services.
 • Length of section likely detracted from survey completion.

• Translation into other languages in the Arctic region may improve survey completion and response.
 • Russian language version may have attracted greater response from Russia.
The survey is still open!

• Experts and officials representing Arctic and Sub-Arctic areas are encouraged to complete the survey.
• Survey results will be published and reported to the Arctic Council, and included in summary proceedings of the WIHAAH conference.

• Responses will be collected through the end of September 2016.
• Survey URL:
 • https://www.surveymonkey.com/r/arctic_council_water_sanitation

Jonathan Bressler, MPH
CSTE Applied Epidemiology Fellow
Alaska Department of Health and Social Services
jonathan.bressler@alaska.gov

Thomas W. Hennessy, MD, MPH
Arctic Investigations Program
Centers for Disease Control and Prevention
thennessy@cdc.gov
Charting a new direction for wastewater treatment in the Canadian north

Ken Johnson
Planner, Engineer, and Historian
Cryofront
Cool Ideas

With support from
Arctic Council
National Research Council of Canada
Stantec Consulting Ltd.
Charting a new direction for wastewater treatment in the Canadian North

The Canadian north is big... really BIG

Alaska 1.72 million km²
Northern Canada 3.92 million km²
Based upon 1980’s research, a water and sewer policy was developed and implemented based upon public health of a minimum water use of **90 litres/capita/day**. This became the design standard for trucked water supply and all of the associated infrastructure.

A water and sewer subsidy began with the baseline being the cost of water in Yellowknife which was 0.2 cents per litre – subsidies were provided for residential use in all communities for all operation and maintenance costs above the Yellowknife benchmark.
Charting a new direction for wastewater treatment in the Canadian North

Cost of Water and Sewer in Canadian North

Grise Fiord, Nunavut - Operation and Maintenance

<table>
<thead>
<tr>
<th>Year</th>
<th>Water $</th>
<th>Sewer $</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>234,391</td>
<td>100,200</td>
<td>334,591</td>
</tr>
<tr>
<td>2002</td>
<td>255,959</td>
<td>109,696</td>
<td>365,655</td>
</tr>
</tbody>
</table>

$2240 per capita per year in 2002 or 6.4 cents per litre

Water use - 5,678,500 litres per year or 95 litres per capita per day

Whati, NT - Operation and Maintenance

<table>
<thead>
<tr>
<th>Year</th>
<th>Water $</th>
<th>Sewer $</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>167,800</td>
<td>71,900</td>
<td>239,700</td>
</tr>
<tr>
<td>2002</td>
<td>184600</td>
<td>79,100</td>
<td>263,700</td>
</tr>
</tbody>
</table>

$580 per capita per year in 2002 or 2.3 cents per litre

Water use: 11.5 million litres per year or 70 litres per capita per day

0.12 cents per litre in Edmonton, Alberta
Charting a new direction for wastewater treatment in the Canadian North

Innovation History

1960 Inuvik utilidor

1975 Resolute buried water and sewer
Charting a new direction for wastewater treatment in the Canadian North

Innovation History

1985 Iqaluit buried water and sewer system
1995 Wetland wastewater treatment systems

Buried water and sewer system in Iqaluit
Charting a new direction for wastewater treatment in the Canadian North

Innovation History

1998 On site water reuse in the north
1998 Iqaluit wastewater treatment facility
2006 Bundled water treatment project
2010 Dawson WWTP or WTF

Bioreactors to be retrofitted from original MBR bioreactor construction

Dawson wwtp
Charting a new direction for wastewater treatment in the Canadian North

Inuvik utilidor replacement

The “utilidor” infrastructure in Inuvik is slowly being replaced with modern materials that include metal clad, insulated pipe, and steel pile systems – the cost is $8,000 per metre.
Charting a new direction for wastewater treatment in the Canadian North

Resolute water and sewer

A piped water and sewer system envisioned to service a community of 2500 people was built in 1975, and has ultimately served a population of only 250 – replacement of the entire piped system is costing $40 million.
The lagoon and wetland processes

Lagoon systems remain the most common form of sewage treatment, in spite of demands for more sophisticated technologies. Improving upon the performance of lagoons is occurring with the application of wetlands for tertiary treatment.
Charting a new direction for wastewater treatment in the Canadian North

Iqaluit wastewater treatment plant

Process – membrane bioreactor (MBR)
History – abandoned by contractor in 2000, **never finished**
Construction – design / build

New design completed in 2004 for conventional treatment with only phase 1 completed – new design initiated in 2015 and construction completion anticipated in 2018

Unfinished wwtp in Iqaluit (2004)

Iqaluit wwtp discharge
Charting a new direction for wastewater treatment in the Canadian North

Bundled water treatment project

The NT government has completed the phase 2 of a unique project delivery approach where water treatment facilities for communities were “bundled” into groups of 5 projects and tendered as design build – the program has delivered 10 water treatment facilities costing on average $2.5 million each.

Water treatment facility in Edzo, NT

Water treatment facility for Ulukhaktok, NT – on route and in place
Whitehorse sewage lagoon system is the largest facility of its kind in northern Canada serving a population of 24,000 and producing a very high quality effluent, which is well below the Wastewater Systems Effluent Regulations.

Performance of northern lagoon systems

Livingston Trail Environmental Control Facility

capital cost

<table>
<thead>
<tr>
<th></th>
<th>1996 $</th>
<th>2016 $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$20 million</td>
<td>$36 million</td>
</tr>
</tbody>
</table>

O + M (per year)

<table>
<thead>
<tr>
<th></th>
<th>2015 $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$200,000</td>
</tr>
</tbody>
</table>

Whitehorse
The lagoon systems in a number of communities in the Nunavut Territory have issues associated with stability and seepage – these issues and other research is demanding a rethinking of the performance of lagoons in the high arctic given the influent quality (pure sewage) and environmental impact (minimal impact).
Charting a new direction for wastewater treatment in the Canadian North

Back to 1st Principles

CCME MWWE Principles and apparent practices that are “rolling” out

- Be financially responsible and sustainable by identifying costs and taking into account other environmental issues

The capital budget for the Dawson City wastewater facility is $25 million – this is in addition to approximately $8 million previously spent on “work” that was never implemented. The operation and maintenance budget was estimated to be $300,000 per year, and reality is over $1 million per year.
There is a significant gap associated with wastewater management between regulatory principles, and reasonable practices for the communities of the far north.

We are in a position to either implement solutions which are appropriate to the administrative, financial, technical, and human resource capacities of northern communities OR create legacies which will unreasonably burden the communities for a generation.
Natural Engineered Wastewater Treatment:

NEWT Nature at Work.

Prepared by Alcoa for Technology Introduction

September 2016
Today, Alcoa has three permitted installations operating, with over 10 NEWT-years of total domestic & international operating experience.

While Alcoa is traditionally considered an Aluminum company, our technical expertise has developed broad innovative solutions.

Alcoa has set the goal of **reducing freshwater consumption 25%** by 2025.

When Alcoa couldn’t find a commercial technology that achieved a **step change in our water sustainability goals**, we created our own...

…the **NEWT™ technology** was perfected as an **innovative hybrid wastewater treatment technology** that maintains high effluent quality.

This innovative technology helps Alcoa **exceed** its water consumption goals and maintain our standing as one of the world’s most sustainable companies.

With positive technical and financial performance and three additional installations **in the build stage**, **Alcoa is commercializing the NEWT™ technology**.
Natural Engineered Wastewater Treatment: NEWT™

NEWT TECHNOLOGY OVERVIEW
is a green solution with real economic benefits

Natural, green design produces high quality effluent

Condensed Footprint

Sustainable operations

Simplified maintenance

Nearly Odorless

Minimal sludge disposal

Source: Alcoa Technical Center, Ma’aden
removes a wide range of contaminants in three simple steps.

The **NEWT™ system** effectively removes a wide range of contaminants from industrial and sanitary wastewaters and generates high quality treated effluent suitable for reuse – while significantly lowering energy and operating costs.

Step 1: Anaerobic Treatment Tank
- Solids, Metals & Primary Organics Removal

Step 2: Engineered Wetland
- Ammonia & Secondary Organics Removal

Step 3 Example: UV
- Disinfection

The **NEWT system** can be designed to remove contaminants like Nitrate and Phosphate.

Source: Alcoa Technical Center
NEWT™ is active in all stages of deployment: bid & proposal, construction, and operation.

Alcoa Technical Center
Pittsburgh, Pennsylvania
U.S.A.

Since replacing an ageing conventional system in 2009, the first commercial-scale system has experienced first sludge removal after 6 years.

<table>
<thead>
<tr>
<th>System Facts:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed:</td>
<td>2009</td>
</tr>
<tr>
<td>Wastewater Type:</td>
<td>Sanitary</td>
</tr>
<tr>
<td>Design Flow:</td>
<td>50,000 gpd</td>
</tr>
<tr>
<td>Footprint:</td>
<td>1.5 acres</td>
</tr>
</tbody>
</table>

Ma’aden Aluminium
Ras Al Khair
Kingdom of Saudi Arabia

In one of the most arid regions on the planet, reducing water demand through reuse of 1.3 million gallons per day will save the industrial facility over $8 million annually.

<table>
<thead>
<tr>
<th>System Facts:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed:</td>
<td>2013</td>
</tr>
<tr>
<td>Wastewater Type:</td>
<td>Sanitary & Industrial</td>
</tr>
<tr>
<td>Design Flow:</td>
<td>1.3 MGD</td>
</tr>
<tr>
<td>Footprint:</td>
<td>17 acres</td>
</tr>
</tbody>
</table>

1.0 MGD reference plant has further reduced footprint to 2.5 acres.

Alcoa Power and Propulsion
Wichita Falls, Texas
U.S.A.

In 2014, North Central Texas’s Stage 5 drought conditions required industrial users to cut water consumption - installing a NEWT system allows the facility to reduce its water consumption by 68% - far above the 10-35% required.

<table>
<thead>
<tr>
<th>System Facts:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed:</td>
<td>2015</td>
</tr>
<tr>
<td>Wastewater Type:</td>
<td>Sanitary</td>
</tr>
<tr>
<td>Design Flow:</td>
<td>35,000 gpd</td>
</tr>
<tr>
<td>Footprint:</td>
<td>2 acres</td>
</tr>
</tbody>
</table>

Alcoa has accumulated over 10 NEWT years of operational know-how & experience.
Given proper final design, and installation, the system is capable of providing the minimum effluent quality listed for the influent quality cited.

<table>
<thead>
<tr>
<th></th>
<th>Influent Upper Limit</th>
<th>Effluent Upper Limit Monthly average</th>
<th>Effluent Upper Limit Instantaneous Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Temperature</td>
<td>> 45 F</td>
<td>Matches inlet</td>
<td>Matches inlet</td>
</tr>
<tr>
<td>Oil & Grease</td>
<td>50 mg/L</td>
<td>Matches inlet</td>
<td>Matches inlet</td>
</tr>
<tr>
<td>pH</td>
<td>6 to 9</td>
<td>6 to 9</td>
<td>6 to 9</td>
</tr>
<tr>
<td>Flow Rate</td>
<td>Design flow</td>
<td>Matches inlet</td>
<td>Matches inlet</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>~ 10^6 CFU/100 ml</td>
<td>200 CFU/100 ml summer winter</td>
<td>1000 CFU/100 ml summer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(monthly geometric mean)</td>
<td></td>
</tr>
<tr>
<td>Ammonia</td>
<td>50 mg/L</td>
<td>5 mg/L</td>
<td></td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>389 mg/L</td>
<td>30 mg/L</td>
<td>60 mg/L</td>
</tr>
<tr>
<td>BOD-5</td>
<td>400 mg/L</td>
<td>25 mg/L</td>
<td>50 mg/L</td>
</tr>
</tbody>
</table>

The system can be designed to remove Phosphorus and Nitrate. Data can be supplied upon request.
Range of Flow Rates @ ATC NEWT

ATC NEWT Flow Rates (MGPD) between 2009 – 2016

- Instantaneous Flow, MGD
- Monthly Avg Flow, MGD
Range of Temperatures @ ATC NEWT

Ambient Temperature taken daily at 12 noon
NEWT™ Design for Alaska

Can NEWT work in sub-freezing temperatures?
- Keeping a trickle of flow through the system helps prevent freezing
- Step 2 flow is always 6” below media level, latest design is 6’ deep
- ATC insulates STEP2 with bails of hay in winter
- Store in the lagoons in the winter and discharge through NEWT in summer

Can NEWT work if there is no power?
- NEWT™ requires limited power for pumps, aeration blower, and UV
- Evaluate low cost alternate power

Can NEWT pair with an existing lagoon?
- A lagoon with low TSS could feed the NEWT™ system
- Regular lagoon dredging/maintenance would be essential
Ongoing Analysis on ATC NEWT™ system performance

Limits
Winter 4.8 ppm
Summer 2.4 ppm
Two Projects are Active to Replace Lagoon Systems with NEWT™ System

<table>
<thead>
<tr>
<th>Location</th>
<th>Western PA</th>
<th>Location</th>
<th>Colorado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Rate</td>
<td>35,000 gpd</td>
<td>Flow Rate</td>
<td>350,000 gpd</td>
</tr>
<tr>
<td>Justification</td>
<td>Lower Life Cycle Cost More customers served</td>
<td>Justification</td>
<td>Lower Life Cycle Cost More customers served</td>
</tr>
<tr>
<td>Status</td>
<td>EPA Act 537 plan awaiting approval</td>
<td>Status</td>
<td>Seeking CDPHE approval</td>
</tr>
</tbody>
</table>
Lagoon/NEWT™ Concept for Alaska

Summer Operation
- Existing Lagoon

Draw Down Lagoon Before Winter
- Existing Lagoon

Refill Lagoon & Store During Winter
- Existing Lagoon

Spring NEWT Restart
- Existing Lagoon

Discharge or Reuse?
A green solution that produces higher quality water

<table>
<thead>
<tr>
<th>Solids</th>
<th>Organics</th>
<th>Ammonia</th>
<th>Fecal Coliform</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.14* mg/L</td>
<td><6* mg/L</td>
<td>1.4* mg/L</td>
<td>< 10** cfu/100 ml</td>
</tr>
</tbody>
</table>

At a lower total cost

- Minimal sludge disposal
- Little to no chemical use
- Condensed Footprint
- Simplified maintenance and operation
- Nearly Odorless

*Based on ATC averages
** Based on UV capability
National Research Council of Canada

Ottawa, ON & Montreal, QC
(Canada's premier science and technology research organization)

Fairbanks, AK
(Researchers and developers of sewage treatment equipment for the Arctic)

Preliminary Test Results from an Electrically-Assisted, Anaerobic Sewage Treatment System
Subtitle:
Bio-Electrochemical Anaerobic Sewage Treatment (BEAST) technology for energy-efficient wastewater treatment in northern communities

Authors: Bob Tsigonis\(^1\) (presenter)
Yehuda Kleiner\(^2\)
Boris Tartakovksy\(^2\)

\(^1\) – Lifewater Engineering Company
\(^2\) – National Research Council of Canada
Topics covered

BEAST technology by NRCC Pilot test by Lifewater
Brief History

Background
• NRCC developing anaerobic treatment technology
• Lifewater Engineering Company building aerobic STP’s for cold climates since 1999

Events
• Late 2015 NRCC personnel visited Lifewater
• Established collaborative research agreement
• Lifewater built full-size residential anaerobic STP
• WIHAH
Objective: Sustainable wastewater treatment

• Simple and robust (extreme conditions), relying solely on local staff for operation and management

• Meet or exceed effluent quality standards (BOD$_5$ ≤25 mg/L; SS ≤25 mg/L)

• Energy-efficient

• Low upfront investment and low operating costs
Microbial Electrochemical Technology

Concept: a low voltage (0.5 - 1.5 V) is applied to enable electron transfer (enhance biodegradation)

Anode reaction (bacteria): Organic materials + water \rightarrow CO$_2$ + n e$^-$ + n H$^+$

Cathode reactions: 8H$^+$ + 8e$^-$ \rightarrow 4H$_2$; CO$_2$ + 4H$_2$ \rightarrow CH$_4$ + 2H$_2$O

- H$_2$ is readily transformed to methane by methanogens
Bioelectrochemical Anaerobic Sewage Treatment (BEAST) technology

- Reactor design similar to septic tank (simple)
- Porous conductive electrodes
- Low voltage power supply used to enhance anaerobic degradation of sewage
Laboratory setup in Montreal, QC

Operating conditions
- Hydraulic retention time 3.3 days
- Continuous flow
- Tests at 22°C, 15°C, and 5°C
- Applied voltage: 1.4 V

- 20 L reactor
- Synthetic and municipal sewage
- Tests at different temperatures
COD/BOD$_5$ removal and energy balance

BEAST performance:

- Influent BOD$_5$: 350 mg/L
- Effluent BOD$_5$: 7-15 mg/L (96-97% removal)
- Suspended solids: 20-40 mg/L
- Colony forming units (CFU): two log reduction
Pilot test at MWWTP (Ste Catherine, QC)

- Test period: April to August, 2016
- 50 L reactor (40 L fluid volume)
- Raw sewage characterization (after primary grit removal):
 - Total COD: 500 - 530 mg/L
 - BOD$_5$: 230-250 mg/L
 - Suspended solids: 300-330 mg/L
- Single pair of electrodes (anode & cathode)
- Inflow rate varied to examine performance at different HRTs (17, 3.1, 2.8, 1.3 and 1.6 days)
- tCOD, sCOD, BOD$_5$, TSS and fecal coliforms monitored
Pilot test - BOD$_5$ removal

![Graph showing BOD concentration over time with different HRT values.](image)

<table>
<thead>
<tr>
<th>HRT (days)</th>
<th>Mean Influent</th>
<th>Mean Effluent</th>
<th>% removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4</td>
<td>167</td>
<td>2.0</td>
<td>98.8%</td>
</tr>
<tr>
<td>3.1</td>
<td>145</td>
<td>5.3</td>
<td>96.3%</td>
</tr>
<tr>
<td>2.8</td>
<td>137</td>
<td>5.0</td>
<td>96.4%</td>
</tr>
<tr>
<td>1.3</td>
<td>190</td>
<td>48.0</td>
<td>74.7%</td>
</tr>
<tr>
<td>1.6</td>
<td>211</td>
<td>6.0</td>
<td>97.2%</td>
</tr>
</tbody>
</table>
Pilot test – total COD removal

<table>
<thead>
<tr>
<th>HRT (days)</th>
<th>Mean Influent</th>
<th>Mean Effluent</th>
<th>% removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4</td>
<td>729</td>
<td>29.1</td>
<td>96.0%</td>
</tr>
<tr>
<td>3.1</td>
<td>397</td>
<td>26.9</td>
<td>93.2%</td>
</tr>
<tr>
<td>2.8</td>
<td>428</td>
<td>40.6</td>
<td>90.5%</td>
</tr>
<tr>
<td>1.3</td>
<td>428</td>
<td>97.8</td>
<td>77.1%</td>
</tr>
<tr>
<td>1.6</td>
<td>463</td>
<td>85.3</td>
<td>81.6%</td>
</tr>
</tbody>
</table>
Pilot test - fecal coliform removal

- Two log reduction in fecal coliforms (before disinfection)
NRCC Conclusions

- Electrically assisted anaerobic wastewater treatment demonstrated high effluent quality (likely to exceed standards)
- Proven net energy gain (if biomethane can be used)
- Simple design (could be used in conjunction with lagoon treatment)
- Fully scalable (from single-dwelling unit to community level)
Residential full-scale system at Lifewater (Fairbanks)

~2800L

~7 days retention time
Programmable power supply & COD fluorimeter
Sources of domestic sewage

- 3-bedroom upstairs apartment
- Office with 2 to 3 people
- Shop with 3 to 6 people
- Occasional visitors
Timeline

• Began filling system with sewage – Sept. 2nd
• System mostly full; turned on power – Sept. 9th
• Got COD fluorimeter operating – Sept. 13th
• First influent and effluent COD samples to the laboratory – Sept. 14th
• Now Sept. 19th – just 10 days after power was turned on
Effluent results five days after startup

- Influent COD: 357 mg/L (after primary treatment)
- Effluent COD: 147 mg/L (59% removal)

(expect 4 to 6 weeks of operation to achieve a steady state)
Power comparison five days after startup

Aerobic STP

<table>
<thead>
<tr>
<th>Component</th>
<th>kWh/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air blower</td>
<td>1.10</td>
</tr>
<tr>
<td>UV</td>
<td>0.96</td>
</tr>
<tr>
<td>Effluent pump</td>
<td>0.08</td>
</tr>
<tr>
<td>Heat trace (50F inside)</td>
<td>4.51</td>
</tr>
</tbody>
</table>

BEAST

<table>
<thead>
<tr>
<th>Component</th>
<th>kWh/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrodes</td>
<td>0.05</td>
</tr>
<tr>
<td>UV (add float control?)</td>
<td>0.96</td>
</tr>
<tr>
<td>Effluent pump</td>
<td>0.08</td>
</tr>
<tr>
<td>Heat trace (35F inside) less</td>
<td>less</td>
</tr>
<tr>
<td>(add insulation, use methane)</td>
<td></td>
</tr>
</tbody>
</table>
Assuming all goes well with effluent quality, what happens next?

- Simplify treatment system as much as possible
- Reduce power use
- Optimize design for fabrication
- Apply arctic engineering
- Fabricate welded plastic tank (insulated, double-walled)
Welded plastic tanks

- Lightweight
- Never corrodes
- UV resistant
- Extremely durable!
Test in rural Alaska

- Test at one or more homes in rural Alaska
Challenges ahead (on a residential scale)

• How best to capture and contain the methane
• A simple, safe method to use the methane to:
 • Keep the system warm
 • Generate power for the electrodes
 • Some other purpose

Please share your ideas, experiences, and needs with us

God bless you in your endeavors to advance healthy Arctic living around the world!
RELOCATE
KIVALINA BIOCHAR REACTOR
Re-Locate LLC has been selected, in partnership with Summit Consulting Services INC and Agnew Beck Consulting, as one of three teams who will assist Re-Locate and the City Council, IRA Council, and the Kivalina Relocation Planning Committee in building an online and physical archive of Kivalina’s history.

Re-Locate is partnered with the Climate Foundation and Therese Theuerzbach

Re-Lo Magazine

Civilization are publishing Re-Lo—a magazine about the issues underlying situations of climate-displacement and rapid social change in the Arctic.

Become an Agent of Change

WochenKlausur invites people from all over the world to team up with people from Kivalina to create small-scale and easy-to-realize ways to overcome site-specific climate disruptions.

Re-Lo Magazine

Kivalina youth takes to the airways and to the web with KVAK TV broadcasting their voice to the world.

Interactive Web Documentary

Sharon Daniel is collecting interviews and community-generated media for an interactive web documentary that will make Kivalina residents’ stories about their efforts to adapt to climate change available to the world.

Modeling Kivalina

The Modeling Kivalina project will construct a physical model of the Island of Kivalina in Alaska using the shoreline as a focal point to draw out its relationships to the arctic ocean and the surrounding land.

Kivalina Water Economies, Foreign Affairs Laboratory

The [applied] Foreign Affairs Lab is travelling to Kivalina to collect data on water supply distribution and climate change impacts.

Kivalina Community Center, Center for Kivalina Territorial Planning, Center for Global Responsibility for Climate Displacement

For decades, the people of Kivalina have packed up their homes every year to relocate to higher ground due to rising sea levels. Among other goals, this project places the narrative of relocation in a continuum of inhabitation of the Kivalina region by indigenous peoples.

A History of Dwelling in the Kivalina Region

In 2013, during Re-locate Camp 1, we hosted a nightly VHF radio show about relocation-related issues. Issues were discussed and documented in a question-and-answer format.

Re-locate Radio Show.
How many people live in the houses where you empty honey buckets?

- 9
 - 0/1
 - and 6

How are you related to the people living in your house?

Mom
Grandma and Grandpa

How are you related to the people living in the houses where you empty honey buckets?

- Mom
- Dad's parents
- Auntie

How many honey buckets are there in your house?

1

How many honey buckets are there in the houses where you empty honey buckets?

1

How often do you empty the honey bucket(s) in your house?

Once a day.

Where do you put the honey bucket waste that is waiting to be taken to the dump?

In a box.

How often do you empty the honey buckets in house 1, 2, 3, ...?

- Not often/Sometimes. Just bring to dump.
- When visits.
- When she's living here. Once every two days.

Do you always empty honey bucket(s) at the same time each day?

His house: Around the same time each day / when it's full. Morning.
- 6 or 7 PM
- 5 PM

Who uses or can use the honey bucket(s) in your house?

- Kids
- Only visitor from out of town use the honey bucket.
- Don't know

Do you use the honey bucket at other people's houses?

No.

Do you wear protective clothing (masks, and gloves) when you're handling honey bucket waste?

No. Rubber gloves. Not all the time.

Why do you empty the honey bucket(s) in house 1, 2, 3, ...?

- Because it's my job. Because I'm living there. He or his uncle typically empties it. To get pop. And just to be helpful.
- Because she's my mom.
- Because I help him out.

Do you do other chores for the household(s) where you empty honey bucket waste?

- Get dirty water out. Get Water. Stove. Dumps Trash. Mom. Anything she asks me to do or when she calls me.
- When he asks me.
Biochar Reactor?
Regional and state agencies won't invest in piped systems for Kivalina's current site. They say Kivalina needs to relocate and the investment would be wasteful. Kivalina Councils have signed a joint resolution to fund $300,000 of the reactor's cost. Fundraising for the rest is underway. Where does it go?

Dumps 1 mile
$20 per load of honeybuckets, $40 with trash.

Kivalina River Water
Fetching fresh water by boat and sno-go costs about $12-15 per bucket ($0.50/gallon).

Community Center
Proposed laboratory for testing new water and waste systems designed specifically for Kivalina.

Wulik River Water
Fetching fresh water by boat and sno-go costs about $6-$10 per bucket ($0.25/gallon).

Unfinished Wastewater Treatment Plant
$30 million, unused, no plans to finish. There is no wastewater treatment pond in Kivalina. The state has less and less money to spend on infrastructure. "We are under $100 million in funding...and we are getting close to $800 million (in needed work)." Cheryl Rosa, Arctic Research Commission

Fresh Water
81% of homes collect water from sources other than the tank for drinking.

Tank Water
Households fetch water 2-3 times per week @ $.05 cents per gallon. Homes with running water haul about 450 gallons of tank water per week using sno-go's and Hondas. Roads in Kivalina are not maintained.

Kivalina Homes
The lines show the water hauling and honeybucket dumping responsibilities (chores, money, trade) of one Kivalina water system operator. In the Kivalina-specific system proposed, the lines for hauling, and the responsibilities can stay the same. 77% of water haulers are male, their average age is 29.

Watering Point
supplies pretreated water from the Wulik River. Red Dog dump its effluent into the Wulik. Tank water is used primarily in Kivalina homes for washwater. When used for drinking, it is filtered at home.

Kivalina Native Store
19% of people we interviewed said they buy bottled water @ about $7 per gallon.
PARTNERS:
KIVALINA IRA COUNCIL
KIVALINA CITY COUNCIL
RE-LOCATE LLC
TECK
NANA VILLAGE ECONOMIC DEVELOPMENT
NAPECA
CLIMATE FOUNDATION
BIOMASS CONTROLS
CXT/LB FOSTER
CIVILIZATION
THREE DEGREES Warmer
ARTPLACE AMERICA

CONTRIBUTORS:
GATES FOUNDATION
Kelvin Biomass Controls

Kivalina Test
- synced just now
- 0002:31:21 Run
- 371.75 °F Stack Temperature
- 889.2 °F Stack - Fire
- 1260.95 °F Pyrolysis Temperature
- 599.98 Watts Power
- 11.64 % Oxygen Percent

Control Board
- Kivalina Test Kivalina Unit
- Ran 4 Days, 3 Hours
- Putnam, CT
- 99 Canal St

Features:
- Export Data
- Sensor Selection
- Adjust Setpoints

Relocate
SANITARY ALUMINUM ZERO REVEALS VENTILATION: ODOR, EXHAUST, AMBIENT EMERGENCY SHUT OFF BUILT-IN TIE DOWNS SOLAR PANEL MOUNTING FULLY INSULATED TOUCH CONTROLS PANEL COLD RATED COMPONENTS CUSTOM O.S. MAN DOOR ACCESS LED LIGHTING PLUG-IN MULTIPLE POWER SOURCES WATER TIGHT/REINFORCED OCEAN READY

James D. Englehardt, Ph.D., P.E.
George Tchobanoglous, Ph.D.
Tingting Wu, Ph.D.
Lucien Gassie
Jay Garland, Ph.D.
Piero Gardinali, Ph.D.
Nichole Brinkman, Ph.D.
Jian Wang, Ph.D.
Acknowledgements

Elizabeth Plater-Zyberk (Co-Principal Investigator)
Kenny Broad (Thrust Leader)
Kamal Premaratne (Thrust Leader)
Miroslav Kubat (Co-Principal Investigator)
Sebastian Eilert (Investigator)
Kiara Timpano (Investigator)
Samir Elmir (Investigator)
Demet Çek (Ph.D. student)
Ranga Dabarera (Ph.D. student)
Oscar Martinez (Ph.D. student)
Julia Wester (Ph.D. student)
Leigh Wellington (Resident and Research Assistant)
Corrine Rainey (Student resident)
Morgan Stoner (Student resident)
Shannon Glenn (Student resident)
Sathvika Ramaji (Student resident)
Katelynne Storey (Incoming student resident)
Alyssa Walker (Incoming student resident)
Ariel Paz (Incoming student resident)
Alana Trombino (Incoming student resident)

MS and undergraduate students: (65)

High school interns (5)

MAJOR SPONSORS
National Science Foundation
US Environmental Protection Agency
University of Miami
UM College of Engineering
UM Dept. Civil, Arch., Env. Engrg.
Engineered Control Systems, Inc.

SPONSORS
BioMicrobics, Inc.
Wastewater Technologies, Inc.
Cherokee Consulting Inc.
Spartan Environmental Technologies
Hazen & Sawyer
AC Graphics
BK Precision
RTI Supply
HDI Supply

UNIVERSITY OF MIAMI
Facilities Design & Construction
Univ. of Miami Office of Housing & Res. Life
Univ. of Miami Office of the Provost
Univ. of Miami College of Engineering
Univ. of Miami Dept. of Civil, Arch., & Environ. Engrg.

REGULATORY AGENCIES
Miami-Dade County Dept. Envir. Resources Mgmt.
Miami-Dade County Dept. Health
Florida Dept. Environmental Protection
Coral Gables Building & Zoning
Motivations since 2003:
Water, Energy, Chemicals

• Water
 • California, Texas, Alaska
 • Miami (60 in/y) → Landscape ≤ 2 days/week

• Energy
 • Sea level rise
Third Challenge: Chemical Accumulation

- TRI releases: 6.2 billion lbs. (2001)
- US surface + ground runoff: 1.8 trillion gpd
- Average $2000 \mu g/L$ toxics \rightarrow US waters
Health and Environmental Effects

- US blood samples \rightarrow toxics universal
 - (Thornton et al. 2002; CDC 2003)

- Wildlife/humans \rightarrow endocrine disruption
 - 5% alligator fertility Lake Apopka
Water Impurity Levels (TDS)

Secondary drinking water standard

Total impurities

Ocean

Sec. Effluent

Secondary drinking water standard
Treated Wastewater Quality
(Average S. Florida)

Meets drinking water standards except:

• Antimony
• Total coliforms
• Secondary:
 – Color
 – Odor
 – TDS (551 mg/L)
 – foaming agents
Current Water Recycling

• Wastewater segregation
 – Multiple conveyance and treatment systems
 – No water independence
 – Dry (composting) toilets

• Direct potable reuse: reverse osmosis
 – Continual concentrate disposal
 – Chemical constituents
 – Microbes
DPR Water & Energy Recovery

- Windhoek, Namibia: 20% recycle
- Big Spring, TX: 20%
- International Space Station: ~75% urine
- U of Miami Net-Zero Water system: 85%
Net Zero Water Management (85% Recycle)

- Water + heat
- 15% rain
- Biological/physical/AOP
- 15% drinking water
- Pesticides + TRI releases

Short
Net-Zero Water: Nearly Closed-Loop Water/Energy Recycling

Apartment

- Drinking/CO_{2}
- Drinking/cooking

County water

- Holding tank
- CaOCl

Real-time risk detection

- 85%

Holding tank

- County water
- Other uses

Vacuum ultrafilter

- Advanced oxidation, mineralization
- 15%

Cistern

- 15% To irrig.
- CaCO_{3}, EtOH

Membrane bioreactor, denitrif.

- CO_{2}, N_{2}
- Bi-annual pumping

Septic tank

- Water + heat

Bi-annual pumping

- CaCO_{3}, EtOH

Water + heat

- Water

County water

- CaOCl

Holding tank

- 15%

CO_{2}

- To irrig.

Vacuum ultrafilter

- 85%

Advanced oxidation, mineralization

- Activate d carbon
Municipal Water Energy

US Primary Energy (%)

- Treatment
- Food waste
- Hot water
UM Urban Net-Zero Water System

- Save 56% of hot water energy
 - Equal to that used for treatment
- Water recycle: 85%
- No concentrate disposal
- Pump sludge every 1-2 years
- Meet potable reuse guidelines
Residence Hall Site

Auton. net zero water unit
Treatment System

Above-ground Aerobic/cistern
Control Systems

Master controls

Peroxone & UV-peroxide
University of Miami students are taking part in a water recycling research project just by living in the Autonomous NetZero Water Dorm - catch the story in our featured podcast line-up @Science360 Radio!
http://go.usa.gov/kVXz
Remote Process Control
Minerals (mg/L TDS)

- 85% Recycle
- System purge
- 90% Recycle

TDS (mg/L)
Organics Reduction through System
Reduction of Nitrogen Species
(Jul., 2013 - Dec. 2013)

![Bar chart showing Total Nitrogen (mg/L) for Septic, Dosing, and Clearwell during the specified period. The chart indicates a significantly higher Total nitrogen (mg/L) for Septic compared to Dosing and Clearwell.]
Phosphate Reduction through System

![Box plot showing phosphate reduction through different systems: Septic, Dosing, and Clearwell. The graph indicates a significant reduction in phosphate levels after dosing and clearwell systems compared to the septic system.](image)
Chemicals

• 1006 emerging constituents tested
• Influent: 56
• Effluent: 50 removed >90%
 – 50 removed >90%
 – 3 increased including DEET
 – 97 of 97 pharms, hormones, personal care products undetected
Microbes

- MS coliphage: none
- Somatic coliphage: none
- Adenovirus: one qPCR signal
- Cryptosporidium: none
- Giardia: none
- Fecal coliform: 8 positive of 136 daily plates
Log Reductions – if we could extrapolate treatment response linearly

<table>
<thead>
<tr>
<th>Organism</th>
<th>Virus</th>
<th>Giardia</th>
<th>Crypto</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZW: Peroxone</td>
<td>44</td>
<td>89</td>
<td>40</td>
</tr>
<tr>
<td>NZW: UV/H$_2$O$_2$</td>
<td>164</td>
<td>32</td>
<td>30</td>
</tr>
</tbody>
</table>
Compliance

• 115 of 115 drinking water stds met:
 – 10/15/2013 – 7/3/14

• 114 of 115 drinking water stds met:
 – Bromate: 20 µg/L
Process Control

• Bromate → Backwash water disposal
• FC → catalytic GAC
 – Remove hydrogen peroxide residual
 – Maintain chlorine residual
Cost versus Plant Scale

Least cost:
Each plant serves ~50,000 people

Condo, hotel

Plants per 1000 homes
Energy Demand: 1 MGD Plant
(kWh/m³ primary energy; EPRI 2002)

Treatment total: -9.12
- Wastewater: -2.39
- Water: -2.10
- Peroxone mineralization: -6.52

Hot water savings: 13.25
- Hot water: 23.81
- Losses: 10.56

Energy Saved: 4.13

Conveyance Energy: -0.99
Conclusions: NZW

- Mineralization energy: $8/1000 gal
 - Total cost 45% lower than San Francisco
- Water independence
- Energy retained in closed loop
- No concentrate disposal
- 15% drinking water disposed
- 1-2 year sludge pumping
Recommendations: NZW

- Remote automated process control
- Local monitoring, maintenance
- Skilled technician on call

- Information:
 - Google: net-zero water miami
 - jenglehardt@miami.edu
Goundbreaking in Miami

Working ...

... for the next generation, in Alaska

Thank you
Potentials and challenges of biogas from fish industry waste in the Arctic

Pernille Erland Jensen
Arctic Technology Center
Department of Civil Engineering
Technical University of Denmark.
Content

• Introduction
• Why make biogas in the Arctic?
• Why is it not done already?
• Biogas potential of fish residues and organic waste
• Perspective
Present challenges

Fish industry residuals
- Major part disposed off at sea
- Oxygen depletion at seafloor
- Methane emission

General waste
- Organic household waste
- Sludge from wastewater treatment
- Bag toilet and septic tank content

Can we make the anaerobic digestion happen under controlled conditions, collect biogas and utilize the energy?
Envisioned challenges

Simplified overview of anaerobic digestion process

- Shrimp, crab: Protein \rightarrow Ammonia \rightarrow Inhibition
- Halibut: Lipids \rightarrow Inhibition of methane
- Cold, changing climate
- Lack of local specialists
- Seasonal shift in loading material and rate

```
Complex polymers
Proteins, Polysaccharides etc.
```

```
Fermentative bacteria
Proteins
```

```
Long chain fatty acids
Fermentative bacteria
```

```
H$_2$ + CO$_2$
Acetogenesis
```

```
CO$_2$ reducing methanogens
```

```
CH$_4$ + CO$_2$
Acetotrophic methanogens
```

Lipids
Biogas plants

Can be very simple installation or highly industrialized optimized plant.
Biogas use

- Electricity – requires large scale plant + energy conversion
- Vehicles – biogas from vegetable products, requires upgrading of gas
- Heat or cooking – can be used directly
 - Simple technology for use of gas to e.g. heat water for boiling of shrimps or heating of buildings
Low temperatures
Slower – higher retention time – larger tank

Lower risk of inhibition and instability at mesophilic conditions

<table>
<thead>
<tr>
<th>Thermal stage</th>
<th>Process temperatures</th>
<th>Retention time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychrophilic</td>
<td>< 20ºC</td>
<td>70 – 80 days</td>
</tr>
<tr>
<td>Mesophilic</td>
<td>30 – 42 ºC</td>
<td>30 – 40 days</td>
</tr>
<tr>
<td>Thermophilic</td>
<td>43 – 55 ºC</td>
<td>15 – 20 days</td>
</tr>
</tbody>
</table>
Methane potential

![Diagram showing methane potential for various waste materials with error bars. Literature values, thermophilic vs. Our measurements, mesophilic.](image-url)
Methane potential

<table>
<thead>
<tr>
<th></th>
<th>ml CH4/g VS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrimp</td>
<td>300</td>
</tr>
<tr>
<td>Algae</td>
<td>250</td>
</tr>
<tr>
<td>Sludge</td>
<td>200</td>
</tr>
<tr>
<td>Shrimp + algae</td>
<td>350</td>
</tr>
<tr>
<td>Shrimp + sludge + algae</td>
<td>400</td>
</tr>
</tbody>
</table>

Potentials and challenges of biogas from fish industry waste in the Arctic
In Sisimiut

> 80% of energy used for heating at shrimp processing plant
Other options

- Shrimp flour
 - Local experience
 - Low price
 - Only shrimp residuals
- Bio oil
 - Only halibut
- Chitin
 - Advanced processing
- Food for fish farming?
- Food for dogs?
Conclusions and outlook

• Fish and seafood by-product do have significant biogas potential.
• Risk of instability of process due to high lipid and protein content, change in temperature, seasonal variations in loading, lacking of local experts.
• Mesophilic conditions may help stabilize process + reduce need of heating/insulation.
• Mixing with organic food waste, sludge and/or algae may help stabilize process + solve mutual waste challenges – needs to be investigated.
• Knowledge exists for operation, but innovation is needed prior to successful implementation.
Questions
EPA REGULATIONS, POLICIES, AND GUIDELINES FOR WATER REUSE – IMPLICATIONS FOR DECENTRALIZED GREYWATER REUSE

Robert K. Bastian, Senior Environmental Scientist
Office of Wastewater Management
U.S. Environmental Protection Agency
Washington, D.C. 20460
Two basic questions ...

How do current EPA regulations, policies and guidance address decentralized greywater reuse?

Do other standards and sources of guidance address decentralized greywater reuse?
EPA has established drinking water standards and water quality standards and criteria focused on various designated uses of surface water, but there are no formal EPA regulations or criteria focused on water reuse in general or specific to decentralized greywater (or is it graywater or gray water or grey water) reuse ...

- Drinking water standards and health advisories ...
 https://www.epa.gov/dwstandardsregulations/drinking-water-contaminant-human-health-effects-information

- EPA water quality standards and criteria ...
 https://www.epa.gov/wqs-tech
Recreational Water Quality Criteria

Fecal coliforms … geometric mean of 200 organisms per 100 mL
U.S. PHS had previously recommended fecal coliform criteria of 200 cfu per 100 mL

Ambient Water Quality Criteria for Bacteria – 1986

<table>
<thead>
<tr>
<th></th>
<th>E. coli</th>
<th>enterococci</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshwater</td>
<td>126 per 100 mL, or 33 per 100mL</td>
<td></td>
</tr>
<tr>
<td>Marine Water</td>
<td>enterococci 35 per 100mL</td>
<td></td>
</tr>
</tbody>
</table>
2012 Recreational Water Quality Criteria

<table>
<thead>
<tr>
<th>CRITERIA ELEMENTS</th>
<th>Recommendation 1</th>
<th>Recommendation 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimated Illness Rate 36/1,000</td>
<td>Estimated Illness Rate 32/1,000</td>
</tr>
<tr>
<td>Indicator</td>
<td>GM (cfu/100 mL)</td>
<td>STV (cfu/100 mL)</td>
</tr>
<tr>
<td>Enterococci</td>
<td>35</td>
<td>130</td>
</tr>
<tr>
<td>(marine & fresh)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. coli</td>
<td>126</td>
<td>410</td>
</tr>
<tr>
<td>(fresh)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
However, the **2012 EPA Guidelines for Water Reuse** document does provide recommended minimum requirements for a series of water reuse practices and refers quite a lot to “Graywater” and “Greywater” reuse, especially in Chapter 2: *Planning and Management Considerations* and most intensively under **2.3.2.1 Individual On-site Reuse Systems and Graywater Reuse** (p. 2-32 – 2-35) and throughout **Chapter 5: Regional Variations in Water Reuse**.

“https://nepis.epa.gov/Adobe/PDF/P100FS7K.pdf”
Includes recommended minimum requirements for ...

- Urban Reuse – Unrestricted ... and Restricted
- Agricultural Reuse – Food Crops ... and Processed Food Crops and Non-food Crops
- Impoundments – Unrestricted ... and Restricted
- Environmental Reuse
- Industrial Reuse
- Groundwater Recharge – Nonpotable Reuse
- Indirect Potable Reuse (IPR)

Have been applied by some states to graywater and harvested stormwater.
Table 4-4 Suggested guidelines for water reuse

<table>
<thead>
<tr>
<th>Reuse Category and Description</th>
<th>Treatment</th>
<th>Reclaimed Water Quality</th>
<th>Reclaimed Water Monitoring</th>
<th>Setback Distances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban Reuse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unrestricted The use of reclaimed water in nonpotable applications in municipal settings where public access is not restricted.</td>
<td></td>
<td>pH = 6.0-9.0</td>
<td>pH – weekly</td>
<td>50 ft (15 m) to potable water supply wells; increased to 100 ft (30 m) when located in porous media (16)</td>
</tr>
<tr>
<td></td>
<td>Secondary(6)</td>
<td>≤ 10 mg/l BOD(7)</td>
<td>BOD - weekly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filtration(8)</td>
<td>≤ 2 NTU(9)</td>
<td>Turbidity - continuous</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disinfection(10)</td>
<td>No detectable fecal coliform /100 ml(9,10)</td>
<td>Fecal coliform - daily</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 mg/l Cu residual (min.)(11)</td>
<td>Cu residual – continuous</td>
<td></td>
</tr>
</tbody>
</table>
References the 2011 NSF/ANSI Standard 350 Onsite Residential and Commercial Water Reuse Systems [assures water is treated to safe level for specific reuse, non-potable applications – e.g., surface or subsurface irrigation, toilet/urinal flushing, decorative fountains, etc.] and the 2011 NSF/ANSI Standard 350-1 Onsite Residential and Commercial Graywater Treatment Systems for Subsurface Discharge

“https://nepis.epa.gov/Adobe/PDF/P100FS7K.pdf”
SCOPE OF STANDARDS

<table>
<thead>
<tr>
<th>STANDARD 350: ON-SITE RESIDENTIAL AND COMMERCIAL WATER REUSE TREATMENT SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Types</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Types of wastewater treated (influent)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Uses of treated water (effluent)</td>
</tr>
<tr>
<td>Ratings</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>------------------------------------</td>
</tr>
<tr>
<td>CBOD₅ (mg/L)</td>
</tr>
<tr>
<td>TSS (mg/L)</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
</tr>
<tr>
<td>E. coli²</td>
</tr>
<tr>
<td>pH (SU)</td>
</tr>
<tr>
<td>Storage vessel disinfection (mg/L)³</td>
</tr>
<tr>
<td>Color</td>
</tr>
<tr>
<td>Odor</td>
</tr>
<tr>
<td>Oily film and foam</td>
</tr>
<tr>
<td>Energy consumption</td>
</tr>
</tbody>
</table>

¹ NA = Not applicable
² Calculated as geometric mean
³ As chlorine. Other disinfectants can be used.
⁴ MR = Measured and reported only
SCOPE OF STANDARDS

NSF/ANSI STANDARD 350-1: ON-SITE RESIDENTIAL AND COMMERCIAL GRAYWATER TREATMENT SYSTEMS FOR SUBSURFACE DISCHARGE

| Building Types | Residential, capacities up to 1,500 gallons per day
 | Commercial, capacities more than 1,500 gallons per day and all capacities of commercial laundry water |
|---|--|
| Types of wastewater treated (influent) | Combined black and graywater |
 | Graywater |
 | Bathing water only |
 | Laundry water only |
| Uses of treated water (effluent) | Subsurface irrigation only |
| Ratings | Single effluent quality with no classifications |
 | Systems are further described based on the type of influent (graywater, bathing only, laundry only). |
TABLE 7 SUMMARY OF DRAFT NSF STANDARD 350-1

EFFLUENT CRITERIA FOR INDIVIDUAL CLASSIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBOD$_5$ (mg/L)</td>
<td>25 mg/L</td>
</tr>
<tr>
<td>TSS (mg/L)</td>
<td>30 mg/L</td>
</tr>
<tr>
<td>pH (SU)</td>
<td>6–9</td>
</tr>
<tr>
<td>Color</td>
<td>MR1</td>
</tr>
<tr>
<td>Odor</td>
<td>Non-offensive</td>
</tr>
<tr>
<td>Oily film and foam</td>
<td>Non-detectable</td>
</tr>
<tr>
<td>Energy consumption</td>
<td>MR</td>
</tr>
</tbody>
</table>

1MR = Measured and reported only
There are states with specific requirements for graywater reuse, such as the 2009 Georgia Gray Water Recycling Systems Guidelines – In accordance with Appendix C ‘Gray Water Recycling Systems’ of the 2009 amendments to the 2006 International Plumbing Code that covers graywater recycling systems for the use of flushing water closets and urinals or subsurface irrigation, if treated according to their Code Standards.

Where gray water is used for flushing toilets and/or urinals, effluent quality must be improved. High amounts of suspended solids will interfere with the operation of the plumbing fixtures and make disinfection difficult. Because of the potential exposure to gray water by people and pets, any disinfection treatment should reduce the number of illness causing pathogens. After disinfection, total coliform bacteria should be reduced to 500 cfu/100 ml. or less. Fecal coliforms levels should be less than 100 cfu/100 ml. Treated gray water effluent which will be used for subsurface irrigation must meet the requirements found in the Division of Public Health’s *Manual for On-site Sewage Management Systems*.

<table>
<thead>
<tr>
<th align="left">Recommended Minimum Water Quality Guidelines For Design of Recycling Gray Water Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">Turbidity (NTU)</td>
</tr>
<tr>
<td align="left">Total Coliform Bacteria</td>
</tr>
<tr>
<td align="left">Fecal Coliform Bacteria</td>
</tr>
</tbody>
</table>
Some Other States with **Greywater (Graywater) Reuse Req’s**

Arizona DEQ, **Water Quality Division: Permits: Reclaimed Water**
http://legacy.azdeq.gov/environ/water/permits/reclaimed.html

California Dept. of Housing and Community Development (HCD)

New Mexico, Environment Department, Liquid Waste (Septic Tank) Program
https://www.env.nm.gov/fod/LiquidWaste/graywater.html

Oregon DEQ Water Quality, Water Reuse Program -
http://www.deq.state.or.us/wq/reuse/graywater.htm
http://www.deq.state.or.us/wq/pubs/factsheets/reuse/11WQ029GraywaterRules.pdf- Fact Sheet
Arizona DEQ, **Water Quality Division: Permits: Reclaimed Water**
http://legacy.azdeq.gov/environ/water/permits/reclaimed.html

Utah Administrative Code ... Environmental Quality/Water Quality ... Rule R317-401. Graywater Systems

Washington State Dept. of Health - Wastewater Management - **Greywater Reuse**
http://www.doh.wa.gov/CommunityandEnvironment/WastewaterManagement/GreywaterReuse
How clean does the water need to be?
While stringent standards guard drinking water quality in the UK, there are no regulatory standards for the quality of non-potable water. Many groups have called for appropriate standards for non-potable water to overcome concerns about potential health hazards and to bolster public confidence in using non-potable water. However, the enforcement of such standards would be difficult as most systems are independently owned and maintained.
The tables provide an indication of the water quality that a well designed and maintained system is expected to achieve for the majority of operating conditions.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Spray application</th>
<th>Non-spray application</th>
<th>System type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pressure washing, garden sprinkler use and car washing</td>
<td>WC flushing</td>
<td>Garden watering</td>
</tr>
<tr>
<td>Escherichia coli (number/100mL)</td>
<td>Not detected</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Intestinal enterococci (number/100mL)</td>
<td>Not detected</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Legionella pneumophila (number/100mL)</td>
<td>10</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Total coliforms (number/100mL)</td>
<td>10</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Parameter</td>
<td>Spray application</td>
<td>Non-spray application</td>
<td>System type</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Turbidity NTU (NTU)</td>
<td><10</td>
<td><10</td>
<td>N/A</td>
</tr>
<tr>
<td>pH (pH units)</td>
<td>5 - 9.5</td>
<td>5 - 9.5</td>
<td>5 - 9.5</td>
</tr>
<tr>
<td>Residual chlorine (mg/L)</td>
<td><2.0</td>
<td><2.0</td>
<td><0.5</td>
</tr>
<tr>
<td>Residual bromine (mg/L)</td>
<td>0.0</td>
<td>N/A</td>
<td>0.0</td>
</tr>
</tbody>
</table>

In addition to these parameters, all systems should be checked for suspended solids and colour. The treated greywater should be visually clear, free from floating debris and not objectionable in colour for all uses. Colour is particularly relevant for washing machine use.
A forty page TECHNICAL MEMORANDUM ON GRAYWATER dated 13Feb2009 by Dr. James Crook and Black & Veach for the Clean Water Coalition and the Southern Nevada Water Authority (Las Vegas) ...

- Graywater use is increasing in the U.S., where as many as 7% of households report some use of graywater, many, particularly in rural areas, without obtaining regulatory permits or approval.

Untreated graywater is used for outside irrigation of turf, plants, or crops. Untreated graywater systems may be as simple as collecting and dispersing the water on single-family residential premises by buckets or may include much more sophisticated collection, piping, and dispersal systems with surge or storage tanks and coarse screening or filtering to remove particulate matter. The amount of graywater produced in a home varies from place to place, ranging from about 20 to 60 gallons/capita/day (50 to 150 gallons/household/day). Most homeowners do not use all of the available graywater produced in their homes, and actual quantities of graywater used are generally considerably less than the amount of graywater produced.
A fifty page WHITE PAPER ON GRAYWATER prepared by Dr. Bahman Sheikh for AWWA, WEF and the WateReuse Assoc. published in 2010 is focused on ...

1) Characterize the most important issues associated with graywater reuse and identify the policy implications of each;

2) Assess the potential impacts of rising trends in graywater use on the water recycling industry; and

3) Develop a regulatory and policy framework that will allow the industry to take the appropriate actions to protect the integrity of the recycled water product and brand.
Provides a rather thorough review of graywater reuse practices and requirements. The section on **Indoor Reuse of Graywater (Toilet Flushing)** suggests that ...

Graywater used for toilet flushing indoors must be treated to standards similar to those of reclaimed water: filtration and disinfection of secondary effluent. By the time such treatment is provided, graywater is already of the same quality as tertiary (or Class A) reclaimed water and is indistinguishable from it. Conveying tertiary treated graywater in purple pipes should not cause conflicts or confusion or pose a public health problem—as long as the treatment system and their operations are in compliance with regulations governing similar uses of recycled or reclaimed water.

which raises the point that indoor uses of graywater will likely need to comply with standards similar to those imposed on indoor use of reclaimed water.
The **Treated Graywater Systems** section indicates that ...

Graywater from nontoilet, nonkitchen sources at a high-rise building, a sports stadium, or an apartment house is sometimes collected separately and treated in an onsite wastewater treatment plant separate from the blackwater. Effluent from the onsite treatment system is then utilized as nonpotable recycled water in a manner similar to that for recycled water. The rationale for such systems is the (a) graywater sources within the building provides enough water for the nonpotable water demand in the building and its vicinity and (b) the lower solids loading, BOD loading, and microbial content of graywater make treatment less costly and less energy-intensive. Such systems are common in Japan, especially in cities where developers of new buildings containing over 3,000 m² or over 5,000 m² (depending on local regulations) of usable space are required to provide onsite treatment and reuse—mainly for toilet flushing. These graywater systems utilize highly sophisticated treatment systems, including membrane biological reactors, and are closely monitored.
Treated graywater systems are not in common use in the United States at the present time; however, the advent of Leadership in Energy and Environment Design (LEED) certification and of other sustainability incentives is expected to increase their utilization in the future. Treated graywater that meets standards and regulations for water reuse is essentially reclaimed water and is not the subject of this paper. However, lesser levels of treatment, especially those provided by homeowners, are common and do not necessarily provide adequate safeguards for those exposed to the water. These simple graywater systems rely on the aerobic topsoil's capability to provide additional treatment by decomposing organic matter and deactivating the microorganisms in graywater.
In 2016, the National Academy Press published the final Water Science and Technology Board report on *Using Graywater and Stormwater to Enhance Local Water Supplies: An Assessment of Risks, Costs, and Benefits* that addresses stormwater and graywater serving a range of nonpotable uses, including irrigation, toilet flushing, washing, and cooling, noting that treatment may be needed, resulting in savings of available potable water supplies.

Graywater Use...

For graywater, substantial water savings are possible when used for toilet flushing and/or in areas with near-year-round irrigation needs (as in the arid southwest) when irrigation demand is well-matched to graywater availability. Based on the committee’s scenario analyses, graywater reuse in Los Angeles provides larger potential potable water savings (up to 13 percent) than household-scale stormwater capture (up to 5 percent), because graywater provides a steady water source during summer months with little or no rainfall.

There is substantial variation in on-site graywater [and stormwater] regulations at the state level with respect to design and water quality for household-scale projects, which leads to varying exposures and risk. The lack of authoritative, risk-based guidelines for the design and potential applications of graywater [and stormwater] in the United States is a major impediment to their expanded use.
Graywater (and stormwater) reuse is being incorporated into law in a variety of respects at the federal, state, and local levels, but not quickly enough to keep up with advances in the technology and its use. Several legal and regulatory constraints remain, hindering the capacity for graywater (and stormwater) to significantly expand the nation’s water supplies.

Developing rigorous, risk-based guidelines for graywater (and stormwater) across a range of possible uses and exposures could improve safety, build public confidence in the practices, reduce expenditures on unnecessary treatment, and assist communities that lack an existing regulatory framework for on-site water supplies. Such guidelines could be developed by the Environmental Protection Agency, a collaboration of states, or a collaboration of U.S. water organizations working with the Environmental Protection Agency. This guidance could then serve as a basis for developing standards of practice for on-site non-potable water use. Oversight and enforcement of water quality standards for applications with significant exposures is also important but challenging, and local enforcement agencies would benefit from additional guidance on appropriate, cost-effective maintenance, monitoring, and reporting strategies.
Gray Water Policy Center

A compilation of grey water laws, suggested improvements to gray water regulations, legality & greywater policy considerations, sample permits, public health considerations, studies, etc.

For regulators, inspectors, elected officials, building departments, health departments, builders, and homeowners.

http://oasisdesign.net/greywater/law/
Policy resources

- Guidance for regulators
- Code Writing and Consultation Service
- Model Greywater Ordinance
- Best Practices Informational Handouts, Code Compliance Packages, Workshops etc
- Treatment effectiveness references
- Soil Percolation and Loading Rates, Percolation Tests, and Long Term Acceptance Rate (LTAR)
- General references, studies

Policy examples

- Uniform Plumbing Code
- Connecticut
- Montana
- New Jersey
- New York
- Oregon
- Utah
- Wyoming
- Australia
- International Plumbing Code
- Colorado
- Nevada
- New Mexico
- Massachusetts
- Texas
- Washington
- Vermont
- Jordan
Graywater

Historically, "graywater" is defined as water generated from domestic activities, including showering, bathing, and washing laundry (but not from toilets or kitchen sinks, due to the risk of contamination). The use of untreated graywater is limited to subsurface irrigation of outdoor plants.

However, in regions where water supplies are unreliable because of drought, water right conflicts, or other issues, interest exists in making greater use of graywater – considered a reliable local resource – for household and commercial purposes.

To expand the indoor and outdoor uses of graywater in the United States, research is needed on the regulatory, operational, and public health aspects of both treated and untreated graywater.

This 2009 Southern California Environmental Report Card was prepared by the UCLA Institute of the Environment.

Graywater is typically wastewater low in turbidity, clear in color, and found from the drainage of bathtubs, showers, bathroom washbasins, clothes washing machines, and laundry tubs. Graywater quality is highly variable because it is source dependent given the variability in household water use. For example, water from clothes washers is high in phosphate content, whereas water from the shower has high turbidity and suspended solids. Residential graywater can be categorized as light graywater or heavy graywater.

Light graywater is wastewater from the shower, bath, bathroom washbasin, and clothes washing machine. Heavy graywater is wastewater from the kitchen sink and dishwasher. According to the revised 2007 California Plumbing Code, heavy graywater is not considered graywater in California. Commercial technologies already exist for processing both light and heavy graywater on-site for non-potable usage. However, the recycling and reuse of graywater requires careful considerations of potential health and environmental risks that can arise due to improper use.
At present, given the revised 2007 California Plumbing Code definition of graywater, both heavy graywater and blackwater must be conveyed to and treated by centralized wastewater treatment plants. Only light graywater can be treated on-site for non-potable usage.

Graywater that can be used directly or with a reasonable level of local treatment (i.e., at the point of use) includes clothes washer, shower/bath and faucet (non-kitchen) water constituting about 60% of the total indoor water use in single-family homes (Figure 6).

Figure 6. Indoor distribution of water use in a single-family home, based on average per capita indoor consumption data for four cities in Southern California.
Under the revised 2007 California Plumbing Code, Tiers 1 and 2 untreated graywater recycling can be used for subsurface or covered irrigation provided it is not for root crops or food crops with edible parts that contact the soil. According to the Draft 2010 California Plumbing Code, indoor use of Tiers 1-3 for toilet flushing would require water treatment to meet disinfected tertiary recycled water criteria as regulated by the California Department of Public Health. This proposed code implies treated graywater (from small and large volume generators) could be used for unrestricted non-potable use (outdoor and indoor) with the requirement of online water quality monitoring and regulatory oversight that seems to be approaching the level of large-scale centralized water treatment plants.

Three levels of graywater treatment steps are required in order to meet the level of recycled graywater quality for the above stated unrestricted non-potable use: a primary treatment for removal of suspended matter (e.g., sedimentation or filtration), a secondary step for stabilizing organic matter (e.g., biological treatment), and a third step that includes finishing filtration (using membranes or media filters) and disinfection (e.g., UV irradiation). Upgrading the quality of graywater to unrestricted non-potable use may require a significant investment and technical know-how to ensure an effective treatment that will provide adequate public health protection.
Rural Alaska
Can rural homes use the same water over and over? A UAA project aims to see

Author: Tegan Hanlon

Grad students Greg Michaelson and Cara Lucas and Aaron Dotson, a UAA civil engineering associate professor, stand in front of the home and wastewater-reuse system at UAA on Friday, Aug. 5, 2016, in Anchorage. (Bob Hallinen / Alaska Dispatch News)
Greenland
Far from reaching The United Nations Millennium Development Goals
Why?

Kåre Hendriksen, Arctic Technology Centre
Technical University of Denmark
Sum up from yesterday’s presentation
Black waste water

<table>
<thead>
<tr>
<th>Category</th>
<th>Sewer or tank</th>
<th>Plastic bag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greenland</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>Towns > 500 households</td>
<td>93</td>
<td>7</td>
</tr>
<tr>
<td>Towns < 500 households</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>Settlements</td>
<td>88</td>
<td>12</td>
</tr>
</tbody>
</table>
Why do we see these big differences?
It is necessary to understand the local and Greenlandic context
Greenland is a micro-state – however, the largest in the world

The 56,000 inhabitants are dispersed across 17 “towns” and 56 “settlements”
Greenland is part of the Danish Realm (Kingdom) with considerably Self Government.

Denmark contributes with 50% of the public budget.

The main livelihood is the living resources of the sea. Shrimps and fish contribute with 90% of the export income.
Not one, but 73 island economies

A crucial characteristic of Greenland is that all settlements are isolated with their own infrastructures

- Island-operation of power, water, waste and sanitation
- No possibilities for commuting on a daily basis
- Limited and expensive transport infrastructure
The challenges of island-operation, extreme weather conditions, and the large distance to the international markets will inevitably result in additional costs.
But a scattered settlement patterns is a prerequisites for sustainable use of the resource base

A look back ...
During the 1950s and 1960s the Danish government attempted to gather the populations in the “open water cities”

They had to fish for cod or work in fish factories

The investments was done in this cities

The number of settlements was halved

It was the intention to depopulate Upernavik and Uummannaq districts
But then the cod disappeared
Most of these cities lost their livelihoods
Nuuk evolved into administration and education
An island operation society that loses its livelihood goes into crisis
Model for settlements' development dynamics

Institutional framework

Base for existence

Human resources

Hendriksen 2012
Paradoks

Some of the settlements that have resources and business potential are not supported at the institutional level. Upernavik district is an example.
Upernavik district that Denmark wanted depopulated

From the late 1980s they began to catch halibut
Only 5% of Greenland's population lives in the district
60% live in the small settlements
The district contribute 9% of the total export income
Paradoxes

Innaarsuit has the largest catch of halibut per capita
Thus, the largest contribution to export income
No sewer or in-house pipe water
Paradoxes

Upernavik town with 1,100 inhabitants has no sewer. Households have no pipe water but water tanks.
Upernavik is located on a small island in the high Arctic desert

Limited water resources
No possibility for:
– Fish processing
– Flush toilets
- Neighbouring island has plenty of water
- 1 km wide and 400 meters deep sound
- Drifting icebergs and sea ice

An engineering challenge
Investments continue to take place in major cities
What is most important - sewer and water supply in Upernavik or cultural center and swimming pool in Nuuk?

No simple answers
Sectorialisation as a challenge

The former national technical organization has been divided into a number of Government owned companies
Selv-Government businesses sub optimize in order to create profits and economic balance.
• An international trend to optimize and liberalize the public sector

Does not account for the Greenland island operation challenges
Lack of cooperation
Lack of cooperation

In the winter 2015 grey water sewers in Qaanaaq base froze and collapsed.

Disagreement between the national electricity and water supply company Nukissiorfiit and Qaasuitsup municipality about who would pay power for heating.

Heating cables were switched off.

Grey water from the hospital ran into the floor of the retail shop.

The sewers are still not repaired.
Qaanaaq - lack of water

• The river is running four months and supply the town with fresh water
• The two large tanks are filled and can supply the town the coming four months
Lack of water

- The remaining four months water is supplied by collecting iceberg on the sea ice by a loader
- The ice is melted by electric heat and distributed through the pipes
- The collection of icebergs is dangerous and the production of water cost 600 DKK (92 $) per m³
- The fishing of halibut is taking place in the expensive period which challenge the profitability
Social consequences

Average household income for:
– Settlements in southernmost Greenland 30,000 $
– Sisimiut 63,000 $
– Nuuk 77,000 $

Water per m3 in:
– Settlements 5 $
– Sisimiut 3 $
– Nuuk 3.80 $
Social consequences

- Sewers financed by municipal taxes and free for users
- Households with bag or tank solution pays for emptying - the municipality contributes to the cost of bags
- Contributes to social inequality
Demographic consequences

• The lack of infrastructure and rising prices contributes to the increasing urbanization in Greenland
Demographic consequences

- The lack of infrastructure and rising prices contributes to the increasing urbanization in Greenland
- A development that challenges the sustainable use of the country's resources and thus economic development
Conclusion

It is necessary to develop solutions:

• Ensuring water supply to all households in Greenland and the fishing industry
Conclusion

It is necessary to develop solutions:

• Ensuring water supply to all households in Greenland and the fishing industry

• Cheap, simple and healthy sound management of waste water

An important part of our research
Qujanaq

Thank you

krhe@byg.dtu.dk
Beyond education:
Using Social Change Marketing
to drive behavior change

Kathy Anderson, MPH, PhD
kathyjanderson@outlook.com
Overheard this week
(from both public health folks and engineers!)

"people just won't do what you tell them to!"
Some of my behavior change attempts ... How about yours?!

New Year’s Resolutions for 2009 to 2012

1. Lose weight again
2. Get fit next year and cigarettes, drink less
3. Give up alcohol
4. Stand up to boss

more
Changing behavior isn’t easy

- NOT simply a matter of *Education, Willpower, or Technology*

- We are complex beings, with
 - Free will
 - Changing external environment
 - Competing interests
 - Social context
 - Psychological makeups
Yet commercial marketers change our behavior all the time!
Why not borrow tactics from the “Evil Empire” of commercial marketing? 😊
Social Change Marketing

INFORMALLY:

“Influencing Behaviors for Good.”

“Social [Change] Marketing is a process that uses marketing principles and techniques to influence target audience behaviors that will benefit society as well as the individual.”

Nancy R. Lee, Mike Rothschild, Bill Smith (2011)
Hallmarks of Social Marketing

A. Behavior-change centric
B. Theory-informed
C. Careful segmentation of target audiences
D. Intensive target audience research
E. Understanding the “exchange” from the audience perspective
F. Using all of the above to creating an integrated, tailored set of interventions
 ◦ Uses all the techniques of traditional marketing, not just advertising or communications

(adapted from French, et al. (2011))
TYPICAL APPLICATIONS

- Public health
- Environment
- Personal finance
Fun example: switch to fall lawn fertilizing in Chesapeake Bay area

Which campaign might work better?
Hallmarks of Social Marketing

A. Behavior-change centric
B. Careful segmentation of target audiences
C. Intensive target audience research
D. Understanding the “exchange” from the audience perspective
E. Theory-informed
F. Using all of the above to creating an integrated, tailored set of interventions
 ◦ Uses all the techniques of traditional marketing, not just advertising or communications

(adapted from French, et al. (2011))
Reject: don’t use drugs

Modify: use a condom every single time

Accept: contribute monthly to your retirement savings

Abandon: stop smoking

Continue: regular cancer screenings
A: Some sanitation–related behaviors?

- **Reject:** don’t skip paying your bill
- **Modify:** reuse grey water only X times
- **Accept:** install a new system in your home
- **Abandon:** stop washing diapers in the greywater sink
- **Continue:** maintaining your in–house system
B. Audience Segmentation and Targeting

- Who are the people at highest risk?
- Who are the people most open to change?
- Who are the groups that are critical for success?
"You want to understand what the reality is for people who experience a particular problem…

…find out what they demand rather than only what can be supplied, and discover things that work."

Craig Lefebvre blog, http://socialmarketing.blogs.com/r_craiig_lefebvres_social/2015/02/asking-the-first-question-for-change.html
D. Understanding the exchange: Costs vs benefits: will the behavior change?

WIIFM ??
D. Understanding the exchange: Costs vs benefits

‘Typical’ costs of behavior change (not just money!)
- Be uncomfortable
- Spend more time
- Break a habit
- Resist peer pressure
- Risk relationships
- Give up leisure time
- Learn new skills
- Pay more money
- ...

Typical benefits

Traditional benefits
- Better health
- Better social life
- Save the planet 😊
- ...

More nuanced benefits
- Better role model for all children in their life
- Being “cool”
- Bonding with baby
-
C, D: The Two Keys to Social Marketing Formative Research

- Get “in their head,” see things their way
- Largely qualitative methods: interviews, focus groups, ethnography...
- Seek their barrier: benefit equation
- Are Benefits > Costs?????
- They know best what will motivate them!
E. Theory-informed

Common themes of behavior change theories (e.g. stages-of-change, ecological, planned behavior):

- **Intention**
- **Self-image**
- **Environmental constraints**

Hints of common themes in behavior change theories:

- Awareness
- Development
- Reflection
- Teamwork
- Competence
- Training
- Sensory
- Attention
- Personal
- Employment
- Team
- Management
- Experience
- Skills
- Talent
- Knowledge
- Self
F: Marketing’s 4–pronged strategy

I. Develop **products and services** that serve the consumer *from their perspective*

II. Design the program to **maximize benefits** and minimize “**costs**” *from their perspective*

III. Make the behavior change **easy and pleasant** *from their perspective*

IV. **Promote** the program in cost–effective ways that fit *how they get their information*
I: SM Products and Services

- Some Goods
- Some services

![Some goods images]

![Some services images]
II: Maximize benefits and decrease costs

- Increase the benefits of the new, desirable behavior
- Increase the costs of the current behavior
- Decrease the “costs” of this desired behavior
Example: Recycling

- Increase the benefits of the new, desirable behavior
 - Recognition in neighborhood newsletter

- Decrease the costs of the desired behavior
 - Discounts on garbage pickup if recyclables are sorted

- Increase the costs of the current behavior (putting recyclables in the trash)
 - Neon signs flagging violators
 - $$ Fines
III: Making the behavior change easy and pleasant

#1. Make the Location Closer (e.g. recycling)

#2. Extend Hours (e.g. screening)

#3. Be there at the point of decision-making (e.g. condom wallets)

#4. Make the location more appealing (e.g. childhood exercise)
IV: Promoting the behavior change

- Advertising
- Events
- Public relations and publicity
- Word-of-mouth marketing
Social Change Marketing in Sanitation Settings

- “Workbook” for creating a Social–Change–Marketing sanitation intervention

- Why SCM is relevant to sanitation projects

- Experiences from under-developed areas

Two recent student projects

- Adopting in-home grey water treatment systems for wash water (Cara Lucas, Jennifer Dobson)

- Sustainability of community systems through payment of bills (Korie Hickel, Bailey Gamble)
Social change marketing is an effective, often-used framework for changing behaviors for the good.

It is complementary to technology solutions.

Major differentiators:
- Based on in-depth knowledge of target audience
 - Including cost vs. benefit analysis
- Benefits of the behavior change are put in terms of “their” views, not “ours”
- Full complement of marketing techniques

Thanks!
Some general resources

- **Books**

- **Papers**

- **Periodicals**
 - Social Marketing Quarterly
 - Journal of Social Marketing

- **Online resources**
 - www.cbsm.com (also a listserv) Doug McKenzie-Mohr, “environmental psychologist”

- **Intermittent Summer Elective, UAA MPH Program 😊**
 - bring a project

see me for details
Sanitation–specific resources

Chinese SM sanitation campaign

(p.1) (Dickey et al., 2015)

- Background: Cysticercosis prevention
- Behavior change: Build, use, and maintain toilet
- Theory: possibly Social Norms or Social Cognitive
- Segmentation: rural Bai villages
 - Raise pigs, eat raw pork
- Understanding of “exchange”
 - Distrust of outside experts
 - Squat-style preferred over sit-style
 - Some wanted simple, others wanted elaborate
 - Main motivations: convenience, privacy, cleanliness, progress
 - note: not disease-prevention!
Chinese SM sanitation campaign (p.2)

- Elements of the program:
 - Demo toilets
 - Half-day kickoff “fair” with games & prizes
 - Brochures and logo’d hats
 - Personal followup
 - Local building coordinator
 - Help find and train local builders
 - Construction quality-control
 - Government price subsidies (dependent on Quality)

- Outcomes
 - Same # of toilets in intervention vs control villages
 - Superior user satisfaction and increased use of toilet in intervention villages
Sewer and Water Regulatory Reform in Alaska

- Multiple federal programs
- Complex Regulatory Structure for each program
- Two (or three) main allocation systems
- Villages administered either by ANTHC or the State of Alaska
- Reform principles
Cumulative need in Alaska: $2,279,960,585

- $80 million annually
- First time service: $1,397,079,862 (30 communities)
- Regulatory upgrades to current systems: $349,461,870
- Upgrades to benefit system operation: $533,418,853
State/Federal funding

- Roughly $82.3 m in funding annually
- State of Alaska Village Safe Water: $11.34 M
- United States Department of Agriculture: $23.82 M
- Environmental Protection Agency: $10.21 M
- Indian Health Service Regular: $9.24 M
- EPA Safe Drinking Water – Tribal: $3.61 M
- EPA Clean Water Act – Indian: $8.28 M
- IHS Housing: $4.90 M
- ANTHC/Private/Other federal: $13.92 M
IHS Regular (SDS)
Sanitation facilities
Interior plumbing for native owned homes (no non-native homes)

IHS Housing
Like-new Native owned homes
No interior plumbing

EPA Safe Drinking Water Act – Tribal Set Aside
Community water facilities and water service lines – no individually owned homes – no solid waste facilities

EPA Clean Water Act – Indian Set Aside
Community sewer facilities & sewer service lines
50% washeteria cost
Individually owned septic tanks
No interior plumbing
No water or solid waste facilities

USDA Rural Development
Community and individual water, sewer, and waste facilities including interior plumbing
- must be defined a distressed community

State of Alaska Village Safe Water
Sanitation facilities, interior plumbing, planning projects

Source: ANTHC
Tribal Housing Authorities responsible for housing development (NAHASDA $)

Regional health organizations responsible for clinic construction (some water and sewer)

Regional tribal Non-profits responsible for road construction (Highway $)

State of Alaska: school construction; water and sewer
Reform Principles

• Align regulatory structure
 • Allow tribes to use private sector financing and technology to leverage federal and state funds

• Tribal organizations must begin coordinating the infrastructure planning and investment both locally and regionally

• We must ensure that the accuracy and consistency of data across regions and communities within the Indian Health Service Sanitation Deficiency System

• Protect the federal investment in rural Alaska
 • Establish multi-tribal operations and maintenance organizations to extend the lifespan of existing utility systems.
WIHAAH Conference

Adaptation of the Built Environment
To Climate Changes in Alaska
Utilities in the Changing Arctic: Water and Sewer

Michael Black, Director of Rural Utilities Management Services, ANTHC
Average Projected Soil Temperature, 2050-2059

Mean Annual Soil Temperatures at 1 M Depth

GIPL1.3 Permafrost Model
Average January air temperature in Point Hope, Alaska:

- 1961-1990, -3°F
- 2001-2010, 3°F
- 2031-2040, 6°F

Projected change of +9°F over 89 years.

Our current sanitation infrastructure is designed for the conditions of the past, not for the present or the future.
What is the cost of climate change to water and sewer infrastructure?

- Water and Sewer along with Transportation Infrastructure is estimated to be most vulnerable to climate change.
- Cost of not adapting infrastructure has been estimated in a 2007 study by University of Alaska (ISER) to shorten the useful life of water and sewer infrastructure by 3.5 years (20 year normal design life assumed).
- Compounding this shortened life over decades adds billions of dollars to preserving the sanitation utility. Estimated to add $3-6 B (rebuilding) by 2030 for Alaskan villages. (Larsen, Goldsmith, Smith, et al. (2007) Estimating Future Costs for Alaska Public Infrastructure At Risk from Climate Change.)
How does climate change affect transportation in villages?

Damage and the inability to use trails, roads, rivers and boardwalks is caused by:

– Erosion
– Flood damage
– Storm damage
– Melting permafrost
– Sedimentation
How does changing Arctic affect solid waste?

Collection systems:
 – Destruction or loss of access

Disposal systems:
 – Erosion intercepting the facility which spreads waste
 – Flood water entering the facility which spreads waste
 – Permafrost or waste melting and releasing contaminants
How does changing Arctic affect water and sewer?

- Foundations-Pipes/Buildings
- Contamination
 - Rising sea levels
 - Storm surge (seawater contamination)
 - Northward migration of animals with disease or parasites (Giardia)
 - Saline intrusion into coastal groundwater
 - Increased algae
- Reduced supply
 - Drought or drying tundra ponds
 - Damage to intakes or impoundments from sediments, ice, and erosion
How does warming permafrost affect water chemistry and quality?

Noatak River

Photo courtesy of Dean Westlake
In Unalakleet, erosion has exposed a water line.
In Kotlik, coastal flooding has damaged community infrastructure.
In Noatak, failing foundations from permafrost warming
Point Lay Permafrost Sustainability Workshop

1. May 2016 - Anchorage, Alaska to discuss permafrost and water-wastewater system
2. Goal: identify options, best practices, and impacts in regard to permafrost
3. Participants: NSB, UAF, CRREL, Engineers and Murkowski representative
4. Expertise: geotechnical, environmental, construction, operations, and planning engineering

The Problem: Snow and Ground Water

The Long Term Implications: Reduced Sustainability of Point Lay

Recommendations: Use Snow Management Strategies

Short term: Make sure to plow and shovel all snow away from each house, each structure and the entire village THOROUGHLY
Mid term: Use fine silt to fill-in cavernous water ponds and holes. Do not use gravel as water can penetrate it and melt the permafrost
Long term: Develop housing, structures, vehicle parking and utilities that allow the snow to blow through, rather than create drifts

UAF Participants: Doug Reynolds, Billy Connor, Tony Nakazawa, Yuri Shur, Dave Barnes, Bill Schnable, Srijan Aggarwal, Misha Kanevskiy and Jon Skinner Special thanks to the Native Village of Point Lay, the North Slope Borough, CRREL, UAF’s School of Management, Natural Resources and Extension, the Geophysical Institute and the Center for Environmentally Sustainable Transportation in Cold Climates, ANTHC, Golder, and Umiaq
What can be done to save the infrastructure that villages depend upon? Conversion of passive to active cooling of foundations on warming permafrost. This is soon to be built in western Alaska.
Adaptation: Portable Alternative Sanitation System (PASS) in Kivalina

This system is entirely homeowner-based and is designed to address the most basic sanitation needs and is portable so it can be moved with the community to a new location.

Typical system layout

Rain catchment system
Nine homes received demonstration in home PASS units to improve availability of water and lower risk of wastewater disposal. Can be moved with home or abandoned.

Rain Catchment Systems
- Water tank equipped to accept hauled water and rainwater
- Point-of-use water treatment device to treat water from non-potable sources

Grey Water Disposal Systems
- Tank equipped to accept liquids that are discharged from the kitchen and bathroom sinks, urinal, and separating toilet
- Shallow brackish ground water and gravely soils are freeze-proof and environmentally sound for disposing grey water
Adaptation to shifting foundations: Arctic Boxes replaced by Flexible Connection to homes
Flexible Service

SOLID connection to the house.
Adaptation: Kotlik carrier pipes placed on Helical Piers instead of sleepers
ANTHC Remote Monitoring

Charts and Reports

Select Facility: Ambler Water Plant Select Chart/Report: Dashboard

Ambler Water Plant Dashboard

Loop Temperatures

South Loop Return Temp
North Loop Return Temp

Water Storage Tank

Tank Temperature
Storage Tank Level
What can be done to save the infrastructure that villages depend upon? Environmental Atlas to ensure Climate Data is updated for Design Engineers

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambler</td>
<td>259</td>
<td>67.086110° -157.851390°</td>
<td>Min (ICCP) 52.0 Max (SNAP) 82.0 Ave (ICCP) 23.0</td>
<td>Min (SNAP) -48.6 Max (SNAP) 83.9 Ave (ICCP) 24.1</td>
<td>Min (SNAP) 22.3 Max (SNAP) 25.2 Ave (SNAP) 25.2</td>
<td>Min (SNAP) 5657 Max (SNAP) 5463 Ave (SNAP) 2933</td>
<td>Min (SNAP) 3113 Max (SNAP) 3113 Ave (SNAP) 3113</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buckland</td>
<td>458</td>
<td>66.979270° -161.123000°</td>
<td>Min (ICCP) 50.0 Max (SNAP) 86.0 Ave (ICCP) 22.0</td>
<td>Min (SNAP) -42.3 Max (SNAP) 88.0 Ave (ICCP) 23.0</td>
<td>Min (SNAP) 13.2 Max (SNAP) 16.1 Ave (SNAP) 16.1</td>
<td>Min (SNAP) 6546 Max (SNAP) 6229 Ave (SNAP) 2668</td>
<td>Min (SNAP) 2842 Max (SNAP) 2842 Ave (SNAP) 2842</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deering</td>
<td>133</td>
<td>66.874970° -162.721740°</td>
<td>Min (ICCP) 50.0 Max (SNAP) 86.0 Ave (ICCP) 22.0</td>
<td>Min (SNAP) -42.3 Max (SNAP) 88.0 Ave (ICCP) 23.0</td>
<td>Min (SNAP) 13.2 Max (SNAP) 16.1 Ave (SNAP) 16.1</td>
<td>Min (SNAP) 6546 Max (SNAP) 6229 Ave (SNAP) 2668</td>
<td>Min (SNAP) 2842 Max (SNAP) 2842 Ave (SNAP) 2842</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kiana</td>
<td>383</td>
<td>66.975000° -160.422780°</td>
<td>Min (ICCP) 50.0 Max (SNAP) 86.0 Ave (ICCP) 22.0</td>
<td>Min (SNAP) -42.3 Max (SNAP) 88.0 Ave (ICCP) 23.0</td>
<td>Min (SNAP) 13.2 Max (SNAP) 16.1 Ave (SNAP) 16.1</td>
<td>Min (SNAP) 6546 Max (SNAP) 6229 Ave (SNAP) 2668</td>
<td>Min (SNAP) 2842 Max (SNAP) 2842 Ave (SNAP) 2842</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kivalina</td>
<td>406</td>
<td>67.728940° -164.533330°</td>
<td>Min (ICCP) 50.0 Max (SNAP) 86.0 Ave (ICCP) 22.0</td>
<td>Min (SNAP) -42.3 Max (SNAP) 88.0 Ave (ICCP) 23.0</td>
<td>Min (SNAP) 13.2 Max (SNAP) 16.1 Ave (SNAP) 16.1</td>
<td>Min (SNAP) 6546 Max (SNAP) 6229 Ave (SNAP) 2668</td>
<td>Min (SNAP) 2842 Max (SNAP) 2842 Ave (SNAP) 2842</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kobuk</td>
<td>109</td>
<td>66.908570° -156.891020°</td>
<td>Min (ICCP) 50.0 Max (SNAP) 86.0 Ave (ICCP) 22.0</td>
<td>Min (SNAP) -42.3 Max (SNAP) 88.0 Ave (ICCP) 23.0</td>
<td>Min (SNAP) 13.2 Max (SNAP) 16.1 Ave (SNAP) 16.1</td>
<td>Min (SNAP) 6546 Max (SNAP) 6229 Ave (SNAP) 2668</td>
<td>Min (SNAP) 2842 Max (SNAP) 2842 Ave (SNAP) 2842</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kotzebue</td>
<td>3126</td>
<td>66.698280° -162.965850°</td>
<td>Min (ICCP) 50.0 Max (SNAP) 86.0 Ave (ICCP) 22.0</td>
<td>Min (SNAP) -42.3 Max (SNAP) 88.0 Ave (ICCP) 23.0</td>
<td>Min (SNAP) 13.2 Max (SNAP) 16.1 Ave (SNAP) 16.1</td>
<td>Min (SNAP) 6546 Max (SNAP) 6229 Ave (SNAP) 2668</td>
<td>Min (SNAP) 2842 Max (SNAP) 2842 Ave (SNAP) 2842</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noatak</td>
<td>512</td>
<td>67.571110° -162.965280°</td>
<td>Min (ICCP) 50.0 Max (SNAP) 86.0 Ave (ICCP) 22.0</td>
<td>Min (SNAP) -42.3 Max (SNAP) 88.0 Ave (ICCP) 23.0</td>
<td>Min (SNAP) 13.2 Max (SNAP) 16.1 Ave (SNAP) 16.1</td>
<td>Min (SNAP) 6546 Max (SNAP) 6229 Ave (SNAP) 2668</td>
<td>Min (SNAP) 2842 Max (SNAP) 2842 Ave (SNAP) 2842</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noorvik</td>
<td>642</td>
<td>66.838330° -101.032780°</td>
<td>Min (ICCP) 50.0 Max (SNAP) 86.0 Ave (ICCP) 22.0</td>
<td>Min (SNAP) -42.3 Max (SNAP) 88.0 Ave (ICCP) 23.0</td>
<td>Min (SNAP) 13.2 Max (SNAP) 16.1 Ave (SNAP) 16.1</td>
<td>Min (SNAP) 6546 Max (SNAP) 6229 Ave (SNAP) 2668</td>
<td>Min (SNAP) 2842 Max (SNAP) 2842 Ave (SNAP) 2842</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selawik</td>
<td>846</td>
<td>66.603890° -160.000690°</td>
<td>Min (ICCP) 50.0 Max (SNAP) 86.0 Ave (ICCP) 22.0</td>
<td>Min (SNAP) -42.3 Max (SNAP) 88.0 Ave (ICCP) 23.0</td>
<td>Min (SNAP) 13.2 Max (SNAP) 16.1 Ave (SNAP) 16.1</td>
<td>Min (SNAP) 6546 Max (SNAP) 6229 Ave (SNAP) 2668</td>
<td>Min (SNAP) 2842 Max (SNAP) 2842 Ave (SNAP) 2842</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shungnak</td>
<td>272</td>
<td>66.888060° -157.136390°</td>
<td>Min (ICCP) 50.0 Max (SNAP) 86.0 Ave (ICCP) 22.0</td>
<td>Min (SNAP) -42.3 Max (SNAP) 88.0 Ave (ICCP) 23.0</td>
<td>Min (SNAP) 13.2 Max (SNAP) 16.1 Ave (SNAP) 16.1</td>
<td>Min (SNAP) 6546 Max (SNAP) 6229 Ave (SNAP) 2668</td>
<td>Min (SNAP) 2842 Max (SNAP) 2842 Ave (SNAP) 2842</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The take home

1. Communities across Alaska are increasingly fragile and vulnerable.

2. Permafrost thaw and erosion are leading threats to infrastructure.

3. Guidelines on design parameters and best practices is lacking.

4. Some infrastructure is operating outside of it’s design parameters.

5. Monitoring is needed to address problems before catastrophic failures.

6. Rapid change is compounding existing problems in community systems.

7. Capacity to ensure compatibility between systems is needed.

8. Climate change is effecting the ability to provide basic health services.
Future Possible Guiding Principles of Infrastructure Design

- Flexible instead of rigid
- Moveable instead of permanent
- Smaller
- Adaptable to changing conditions
- Efficiency and simplicity over complexity
- Innovative
- Increased monitoring
- Modular
- Light Footprint
OUR VISION:
Alaska Native people are the healthiest people in the world.
WIHAH Conference

Graham Gagnon, Kaycie Lane & Amina Stoddart

Civil and Resource Engineering
Dalhousie University

October 7, 2016
Water Safety Plans (WSPs)

- Objective: Ensure water is safe for consumption from the source water through the distribution system.
- Promoted by the W.H.O. in the water guidelines of 2001:
 - Designed as a risk assessment tool.
 - Not strictly regulatory.
- Ubiquitous: tailored to local water conditions:
 - Community buy-in.
Task 1 - Engage the community and assemble a water safety plan team

Task 2 - Describe the community water supply

Task 3 - Identify and assess hazards, hazardous events, risks and existing control measures

Task 4 - Develop and implement an incremental improvement plan

Task 5 - Monitor control measures and verify the effectiveness of the water safety plan

Task 6 - Document, review and improve all aspects of water safety plan implementation

Water safety plan continuous improvement cycle
WSP Review

• Iceland
 – Well established, all GW
 – Have different plans based on size of system

1.11.2 Risk assessment - checklist

Risk assessment is made for five components of the water supply system. That involves the catchments area, well-zone, storage reservoirs, pump stations and main pipe, distribution system and connections and finally fire hydrants. Only present those factors that scored 4 or higher in the valuation on probability and severity, others are left out. Following is a checklist for features that may be considered as risk factors:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Risk factor</th>
<th>Likelihood</th>
<th>Severity</th>
<th>Value</th>
<th>Control and control measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Roads, traffic such as oil trucks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Transport of chemicals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>The use of fertilizer e.g. in forestry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Industrial activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Agriculture e.g. sheep and horses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Storage of chemicals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Road fill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Septic tanks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Ablation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Flood</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Approaching flights</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Vandalism</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Iceland Risk Scoring System

- **Likelihood** – how likely an event is to occur within your water system
 - 1 – Less than 1/100 years
 - 2 – 1/100 years
 - 3 – 1/1 year – 1/10 year
 - 4 – 1/1 week - 1/1 year
 - 5 – More than 1/1 week

- **Severity** – the severity of an event if it did occur within your water system
 - 1 – Very Little
 - 2 – Little
 - 3 – Average
 - 4 – High
 - 5 – Very High
WSP Review

- Alberta
 - Excel File: four sections
 - Same GCDWQ and national regulations

<table>
<thead>
<tr>
<th>Risk Description</th>
<th>Risk I.D.</th>
<th>Hazard</th>
<th>Cause of Potential Failure</th>
<th>Comment</th>
<th>Current Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disinfection Risks</td>
<td>DWSP-T-071</td>
<td>Microbiological contamination</td>
<td>Due to WTW failing to shut down when disinfection fails.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disinfection Risks</td>
<td>DWSP-T-072</td>
<td>Microbiological contamination</td>
<td>Due to reduction transmittance of light due to fouling of lamp sheath or to increase in colour or turbidity</td>
<td>If light transmission is reduced UV becomes less effective.</td>
<td></td>
</tr>
<tr>
<td>Disinfection Risks</td>
<td>DWSP-T-073</td>
<td>Microbiological contamination</td>
<td>Due to inability to add sufficient chlorine due to high flow or high requirements due to high chlorine</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alberta’s Risk Scoring System

• **Likelihood** – how likely an event is to occur within your water system

 0 – Not Applicable
 1 – Highly Unlikely
 2 – Unlikely
 4 – Medium
 8 – Probable
 16 – Almost Certain

• **Consequence** – the severity of an event if it did occur within your water system

 0 – Not Applicable
 1 – Insignificant
 2 – Minor
 4 – Moderate
 8 – Severe
 16 – Catastrophic

Risk Scoring

- Alberta Risk Score = Likelihood \times \text{Consequence}
- Iceland Risk Score = \text{Likelihood} + \text{Severity}
- Each Risk Score prioritizes an issue
- Gives a matrix of possible risk scores
 - High
 - Moderate
 - Low
Risk Matrix (Alberta)

<table>
<thead>
<tr>
<th>Likelihood Descriptor</th>
<th>Not Applicable</th>
<th>Insignificant</th>
<th>Minor</th>
<th>Moderate</th>
<th>Severe</th>
<th>Catastrophic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Applicable</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Most Unlikely</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Unlikely</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>Medium</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>Probable</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
</tr>
<tr>
<td>Almost Certain</td>
<td>16</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
</tr>
</tbody>
</table>
Case Study
Collins Park Water Treatment Plant

Source
Fletchers Lake

Treatment
Ultrafiltration, Nanofiltration, chlorination, UV disinfection

Serves
313 people
Goals of a WSP at Collin’s Park

• Find out whether different scoring systems make a difference in identifying risks
 – Are the same risks identified?

• Assess whether new risk framework highlights the actual risks that are present within the system

• Re-evaluate our questions – are we asking the right things
 – Use operator feedback and input to optimize the way we assess risks
Example of Question Framework

Likelihood

Do you experience issues with low raw water quantity?

a) Yes 16
b) No 1

Consequence

How often do you have leaks in your intake pipes?

a) Frequently 16
b) Occasionally 8
c) Rarely 2
d) Never 0
Example of Question Framework

Likelihood

Do you experience issues with low raw water quantity?

- a) Yes 16
- b) No 1

Consequence

How often do you have leaks in your intake pipes?

- a) Frequently 16
- b) Occasionally 8
- c) Rarely 2
- d) Never 0

Issue being identified: Low raw water quantity due to leaks in intake pipes

Likelihood = 16
Consequence = 2
Risk Score = 32
Risk Level = Moderate
Method Under Development

Source Water Quantity

Step 1 of 2: Submit

Has your source water ever provide insufficient water quantity? *
- Select an option:

Do you ever exceed water withdrawal permits? *
- Select an option:

Do storms or heavy rainfall influence water quantity? *
- Select an option:

Have you experienced issues with low influent water pressure? *
- Select an option:

Have you ever experienced pump failures? *
- Select an option:

Are there ever issues with leaks in raw water mains? *
- Select an option:

Online Survey Tool

Easy to use

Users don’t see the scores associated with questions

http://formsmarts.com/form/1qlf?mode=h5
Survey Answers

Raw Data from the Survey can be exported to Excel
- Raw data is easier to manipulate
- Changed easily every time you fill out your WSP

Source Water Quantity

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No - Neve</td>
<td>No - Neve</td>
<td>Yes - Rare</td>
<td>No - Neve</td>
<td>No - Neve</td>
<td>No - Never</td>
</tr>
</tbody>
</table>

Source Water Quality

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Medium</td>
<td>Yes - Freq</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Source Water Quantity

Has your source water ever provide insufficient water quantity?
- Select an option.

Do you ever exceed water withdrawal permits?
- Select an option.

Do storms or heavy rainfall influence water quantity?
- Select an option.

Have you experienced issues with low influent water pressure?
- Select an option.

Have you ever experienced pump failures?
- Select an option.

Are there ever issues with leaks in raw water mains?
- Select an option.

Alberta Scoring System

<table>
<thead>
<tr>
<th>Surface Water Quantity</th>
<th>Likelihood</th>
<th>Consequence</th>
<th>Risk Score</th>
<th>Risk Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWQ L1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Low</td>
</tr>
<tr>
<td>SWQ L1.C1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>Low</td>
</tr>
<tr>
<td>SWQ L1.C2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Low</td>
</tr>
<tr>
<td>SWQ L2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Low</td>
</tr>
<tr>
<td>SWQ L2.C3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Low</td>
</tr>
<tr>
<td>SWQ L2.C4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Low</td>
</tr>
<tr>
<td>SWQ L2.C5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Low</td>
</tr>
<tr>
<td>SWL1</td>
<td>16</td>
<td>16</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>SWL1.C1</td>
<td>16</td>
<td>16</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>SWL1.C2</td>
<td>16</td>
<td>16</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>SWL1.C3</td>
<td></td>
<td></td>
<td>Medium</td>
<td></td>
</tr>
</tbody>
</table>

For more detailed information, please consult the full report.
Applying a WSP to Nunavut
On-Going Work for WSPs in Nunavut

Very remote communities

Trucked water

Mix of ground and surface water
Challenges Unique to Nunavut

- Remoteness
- Highly varied water treatment methods
- Monitoring plans not well defined
- Operator training
- Trucked distribution system
Applying the Alberta DWSP Framework to Nunavut

- Four Sections: Source, Treatment, Network, Customer

- Risks applicable to Nunavut:

<table>
<thead>
<tr>
<th>Risk Section</th>
<th>Applicable Questions</th>
<th>Total Questions</th>
<th>Percentage Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>27</td>
<td>38</td>
<td>71%</td>
</tr>
<tr>
<td>Treatment</td>
<td>31</td>
<td>84</td>
<td>37%</td>
</tr>
<tr>
<td>Network</td>
<td>20</td>
<td>48</td>
<td>42%</td>
</tr>
<tr>
<td>Customer</td>
<td>10</td>
<td>20</td>
<td>50%</td>
</tr>
</tbody>
</table>
Questions Specific to Nunavut

SW L2.1) Is there wastewater infrastructure nearby (i.e. within 30m of a sewer or sewer pipe, within 46m from a septic tank or sewage disposal point, etc.)?
 Yes 16
 No 0

SW C2.1.1) Have you ever sampled for bacteria?
 Yes 1
 No 16

SW C2.1.2) Has E.coli ever been found?
 Yes 16
 No 1

SW C2.1.3) Have you sampled at least once per month for the past five years?
 Yes 1
 No 16

WSP questions are specific to Nunavut guidelines
Trucked Water Delivery System

• Different from conventional piped distribution system

BULK WATER HAULING GUIDELINES

For the purposes of this guideline, “Bulk Water” is defined as potable water intended for human consumption that is conveyed and dispensed from an approved transport vehicle (Water Hauling Truck).

The water hauling vehicle and associated equipment must be designed, operated and maintained in a sanitary manner to ensure that water does not become contaminated and pose a risk to Public Health.
Trucked Water Delivery System

- Source Water
- Reservoir
- Chlorination
- Pump House or Hoses and Nozzles
- Delivery System
- Home Storage Tanks
Trucked Water Delivery System

- Source Water
- Reservoir
- Pump House or Hoses and Nozzles
- Chlorination
- Method of Chlorination
- Contact Time
- Delivery System
- Level of Cl2 over time
- Many Households
- Home Storage Tanks
- Biofilm Formation

Pump Function
Connections
Trucked Water Survey

- Sections:
 - Connections to truck (pump house and household)
 - Maintenance and Sanitation
 - Chlorination

TWL Are water delivery trucks used exclusively for treated drinking water?
- Yes 1
- No 16

TWC Do water trucks ever carry wastewater (e.g. domestic, industrial, food)?
- Yes 16
- No 1
Trucked Water Delivery System

<table>
<thead>
<tr>
<th>Question Code</th>
<th>Likelihood Question</th>
<th>Consequence Question</th>
<th>Likelihood Answer</th>
<th>Consequence Answer</th>
<th>Likelihood Score</th>
<th>Consequence Score</th>
<th>Risk Score</th>
<th>Risk Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>TW L1</td>
<td>Are water delivery trucks used exclusively for treated (e.g., chlorinated) drinking water?</td>
<td>Is written confirmation from a health officer given prior to using the water delivery truck for substances other than treated drinking water?</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>16</td>
<td>16</td>
<td>Moderate</td>
</tr>
<tr>
<td>TW L1.C2</td>
<td>Do water trucks ever carry wastewater (e.g., domestic, industrial, food)?</td>
<td>Do water trucks ever carry untreated freshwater?</td>
<td>Yes</td>
<td></td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>Moderate</td>
</tr>
<tr>
<td>TW L1.C3</td>
<td></td>
<td>Do water trucks ever carry untreated freshwater?</td>
<td>No</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Low</td>
</tr>
<tr>
<td>TW L2</td>
<td>Are water delivery trucks visually inspected regularly?</td>
<td>How often are visual inspections of water hauling trucks carried out?</td>
<td>No</td>
<td>Monthly</td>
<td>16</td>
<td>4</td>
<td>64</td>
<td>High</td>
</tr>
<tr>
<td>TW L2.C4</td>
<td></td>
<td>How often do you find issues (e.g., rust in the tank, leaks) with water hauling trucks?</td>
<td></td>
<td>Rarely</td>
<td>4</td>
<td>64</td>
<td>64</td>
<td>High</td>
</tr>
<tr>
<td>TW L2.C5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Next Steps

• The developed WSP is in its infancy
 – A first step in preventative drinking water regulations from a risk management perspective

• Several additional steps are required to understand how the approach could be best implemented:
 – E.g., pilot-scale application
Acknowledgments

• GN Department of Health
 – Michele LeBlanc-Havard
 – Dr. Maureen Baikie

• CWRS Team
 – Dr. Wendy Krkosek
 – Lindsay Anderson
A New Affordability Indicator for Rural Alaskan Water Utilities

Barbara AL Johnson
Ms Resource and Applied Economics candidate
School of Management
University of Alaska Fairbanks
bajohnson20@alaska.edu
Outline

• Background
 • The Economics of water utility
 • Defining Affordability
 • Evaluating the Current Affordability Indicator

• The New Affordability Indicator

• Results
 • Akiachak
 • Shageluk
 • Overview of unserved communities

• Further research
The Economics of Water Utilities: Economies of scale

The water utility has annual costs of $100 per year.

Two household community:
Cost per household: $50

Four household community:
Cost per household: $25
The Economics of Water Utilities: Funding and pricing

Capital costs (construction costs) are funded by state and federal agencies.

Once the utility is built the community is expected to cover the annual costs of running the utility.

Rates are set by dividing the annual costs by the number of customers.

If rates are too high, some customers will be unable to pay their bills.

Utilities cut off non paying customers and re-calculate rates.

Even less customers can afford the water bills and so more drop off.

Rates increase again.
The Economics of Water Utilities

I wanna know how many villages have households paying $250 a month for water service. The only reason I wanna know is because I think residents of St. Michael, Alaska are over paying on their water service. My water bill is current to this month, but that's because I work year round and can afford it. But so many families in this village hardly have a chance at keeping up with this rate. It's for those families I am concerned. There's no question that sanitation is a lot easier with running water and flush toilets, and every household or community that desires such a system deserves one. But at what cost?
ARUC - Alaska Rural Utility Collaborative

Hello Scott, thank you for your question. The water and sewer rates for your community are based on expenses which must be paid in order to keep the water plant operating. As with all Alaska Rural Utility Collaborative (ARUC) communities, revenues must be equal to expenses.

Unfortunately, the collections are not generating enough revenue to pay water and sewer expenses. The annual operating expenses for providing water and sewer services for St. Michael is $272,936. If all customers in St. Michael paid their water and sewer bills, the rate could decrease to $196 a month.

We do understand that the rates for some communities are high. In 2014, the City agreed to a subsidy to decrease residential rates to $175 per month. The agreed upon subsidy, however, was not sent to ARUC. Based on current service and collection rates and projected expenses, revenues will not be sufficient to cover current operating expenses, or reduce deficit or build critical equipment reserves.

Based on last year’s finances, the ARUC Advisory Committee recommended that rates increase for residential users. However, the City is still working to get a subsidy for the residents. There are also some energy efficiency projects that will likely save in energy and fuel costs.

If you have additional questions or concerns please contact Rick Lind, the regional manager at 1-866-205-7581.
Defining Affordability

Affordability:

- **Individual (household level):** Whether a *low income household* is able to pay a water bill without giving up other essential goods and services.

- **Community level:** The community is able to cover the utilities annual costs.
Defining Affordability

According to the DEC definition, water utility rates of $293 per month or less are affordable in Fairbanks.
1. The MHI fails to reflect the cost burden experienced by below median income households:

- But if this household has an annual income of $10,000 then the $293 monthly rate accounts for 35% of the household’s income.

- A monthly rate of $293 represents 5% of MHI.

Evaluating the Current Affordability Indicator

bajohnson20@alaska.edu - WIHAH 2016
2. The MHI is a static snapshot of income:
 - Rural Alaskan MHI values are collected every 5 years.
 - Evidence suggests that income in this region can vary significantly from year to year.
 - Thus if the data was collected in a year with a higher than usual number of cash paying jobs the MHI figure would overestimate the community’s income. Conversely if the data was captured in a bad year, the MHI could be underestimated.
3. It does not account for high costs of living:
Evaluating the Current Affordability Indicator

4. It does not account for the demographic composition of a community:

<table>
<thead>
<tr>
<th>Community</th>
<th>Average household size</th>
<th>Age dependency ratio*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kivalina</td>
<td>4.40</td>
<td>87.3%</td>
</tr>
<tr>
<td>Teller</td>
<td>3.18</td>
<td>65.8%</td>
</tr>
</tbody>
</table>

*Age dependency ratio: number of people under the age of 18 + people over the age of 65 number of people between the ages of 18 - 65
5. MHI does not take into account income distribution:

Annual income per household: $10,000

Annual income per household: $70,000

Annual income per household: $40,000

Annual income per household: $70,000
The New Affordability Indicator

Financial Capability Indicator (FCI)

Residential Index (RI)

<table>
<thead>
<tr>
<th>Financial Capability Indicator (FCI)</th>
<th>Residential Index (RI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong > 2.5</td>
<td>Low Burden</td>
</tr>
<tr>
<td>Mid-Range 1.5 < x ≤ 2.5</td>
<td>Low Burden</td>
</tr>
<tr>
<td>Weak ≤ 1.5</td>
<td>Medium Burden</td>
</tr>
</tbody>
</table>

- **Low Burden**
- **Medium Burden**
- **High Burden**

Low ≤ 2% 2 % < RI ≤ 5% > 5%

bajohnson20@alaska.edu - WIHAH 2016
The New Affordability Indicator

- Residential Index (RI) calculated for every income quintile, in particular for those below the median values.
 - Low Impact - is an RI of less than 2%
 - Medium Impact - is an RI between 2% and 5%
 - High Impact - is an RI of over 5%

<table>
<thead>
<tr>
<th>Income Quintile 1 (IQ1)</th>
<th>IQ2</th>
<th>IQ3</th>
<th>IQ4</th>
<th>IQ5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 - $21,852</td>
<td>$21,852 - $41,904</td>
<td>$41,904 - $67,215</td>
<td>$67,215 - $107,967</td>
<td>$107,967 - $200,460</td>
</tr>
</tbody>
</table>

20% of the population in Fairbanks has an income between $0 and $21,852.

The US Census calculates the lowest limit of the top 5% of IQ5. In Fairbanks this is $200,460.
Residential Index Calculations for Adak

<table>
<thead>
<tr>
<th>IQ1</th>
<th>IQ2</th>
<th>IQ3</th>
<th>IQ4</th>
<th>IQ5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ 67,583</td>
<td>$ 75,700</td>
<td>$ 93,833</td>
<td>$ 114,500</td>
<td>$ 127,167</td>
</tr>
</tbody>
</table>

Divide each Income Quintile (IQ) by the annual user fees: $720

| 720/67,583 = 1.07% | 0.95% | 0.77% | 0.63% | 0.57% |

Average RI(IQ1-IQ3): 0.93%

Income Quintile: American Community Survey 2014
User Fees: Dec 2015
A Financial Capability Indicator (FCI) that is calculated by assigning values from 1 (weak) to 3 (strong) to the following:

- Percentage of households which are Supplemental Nutrition Assistance Program (SNAP) recipients in the community,
- Percentage of households which receive public assistance,
- Percentage of households living under the poverty level,
- Percentage of people over the age of 16 with full time jobs,
- Percentage of MHI spent on an average electric bill and
- Cross-price elasticity of demand of water with respect to electricity prices.
Energy Impact

Energy cost account between 40%–70% of utility expenditures. Furthermore, anecdotal evidence suggest that energy and water are complementary goods.

This means that they go together - let’s imagine that right and left shoes were sold separately. In general, consumers would buy a right shoe with every left shoe.
<table>
<thead>
<tr>
<th></th>
<th>≤ 2%</th>
<th>2% < x ≤ 5%</th>
<th>> 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affordability value</td>
<td>Low Burden</td>
<td>Medium Burden</td>
<td>High Burden</td>
</tr>
<tr>
<td>% over the age of 16 employed full time</td>
<td>≤ 30%</td>
<td>30% < x ≤ 50%</td>
<td>> 50%</td>
</tr>
<tr>
<td>Affordability value</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>% households under the poverty level</td>
<td>> 20%</td>
<td>10% < x ≤ 20%</td>
<td>< 10%</td>
</tr>
<tr>
<td>Affordability value</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>% of households which are SNAP recipients</td>
<td>>20%</td>
<td>10% < x ≤ 20%</td>
<td><11%</td>
</tr>
<tr>
<td>Affordability value</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>% of households receiving public assistance</td>
<td>>30%</td>
<td>10% < x ≤ 20%</td>
<td><11%</td>
</tr>
<tr>
<td>Affordability value</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Electric bill % of MHI</td>
<td>> 5%</td>
<td>2% < x ≤ 5%</td>
<td><2%</td>
</tr>
<tr>
<td>Affordability value</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Cross Price Elasticity of Water</td>
<td>< -0.66</td>
<td>-0.66% < x ≤ -0.33</td>
<td>> -0.33</td>
</tr>
<tr>
<td>Affordability value</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

bajohnson20@alaska.edu - WIHAH 2016
Results - Akiachak

<table>
<thead>
<tr>
<th>Annual Fee</th>
<th>RI(MHI)</th>
<th>RI(IQ1)</th>
<th>RI(IQ2)</th>
<th>RI(IQ3)</th>
<th>RI(IQ4)</th>
<th>RI(IQ5)</th>
<th>RI(IQ1-IQ3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,416</td>
<td>4.0%</td>
<td>8.0%</td>
<td>5.0%</td>
<td>4.0%</td>
<td>3.0%</td>
<td>1.0%</td>
<td>6%</td>
</tr>
</tbody>
</table>

FCI indicator

<table>
<thead>
<tr>
<th>FCI indicator</th>
<th>Value</th>
<th>FCI Value</th>
<th>FCI Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of adults with full time employment</td>
<td>16%</td>
<td>1</td>
<td>1.33</td>
</tr>
<tr>
<td>% household below poverty level</td>
<td>17%</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>% households on SNAP</td>
<td>32%</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Financial Capability Index (FCI)

Strong	> 2.5
Mid-Range	1.5 < x ≤ 2.5
Weak	≤ 1.5

Residential Index (RI)

- Low: ≤ 2%
- Mid-Range: 2% < RI ≤ 5%
- High: > 5%

- Strong: IQ1
- Mid-Range: IQ2, IQ3, IQ4
- Weak: IQ5
<table>
<thead>
<tr>
<th>Annual Fee</th>
<th>RI(MHI)</th>
<th>RI(IQ1)</th>
<th>RI(IQ2)</th>
<th>RI(IQ3)</th>
<th>RI(IQ4)</th>
<th>RI(IQ5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200 (A)</td>
<td>7.38%</td>
<td>10.85%</td>
<td>8.89%</td>
<td>4.66%</td>
<td>2.32%</td>
<td>1.36%</td>
</tr>
</tbody>
</table>

FCI indicator

<table>
<thead>
<tr>
<th>FCI indicator</th>
<th>Value</th>
<th>FCI Value:</th>
<th>FCI Score:</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of adults with full time employment</td>
<td>32%</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>% household below poverty level</td>
<td>59.26%</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>% households on SNAP</td>
<td>40.70%</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>% households on public assistance</td>
<td>81%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% MHI Electric Bill</td>
<td>17.5%</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Estimated impact of E prices on H20</td>
<td>-0.36</td>
<td>2</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Financial Capability Index (FCI)

- **Strong** > 2.5
- **Mid-Range** 1.5 < x ≤ 2.5
- **Weak** ≤ 1.5

Residential Index (RI)

- **Low** ≤ 2%
- **Mid-Range** 2% < RI ≤ 5%
- **High** > 5%

- **IQ5(A)**
- **IQ3-IQ4(A)**
- **IQ1-IQ2 (A)**

Shageluk
Shageluk

<table>
<thead>
<tr>
<th>Annual Fee</th>
<th>RI(MHI)</th>
<th>RI(IQ1)</th>
<th>RI(IQ2)</th>
<th>RI(IQ3)</th>
<th>RI(IQ4)</th>
<th>RI(IQ5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1512 (B)</td>
<td>9.30%</td>
<td>13.67%</td>
<td>11.20%</td>
<td>5.87%</td>
<td>2.93%</td>
<td>1.71%</td>
</tr>
</tbody>
</table>

FCI indicator

% of adults with full time employment	32%	2
% household below poverty level	59.26%	1
% households on SNAP	40.70%	1
% households on public assistance	81%	1
% MHI Electric Bill	17.5%	2

Estimated impact of E prices on H20

-0.36 | 2 |

Financial Capability Index (FCI)

- **Strong**: > 2.5
- **Mid-Range**: 1.5 < x ≤ 2.5
- **Weak**: ≤ 1.5

Residential Index (RI)

- **Low**: ≤ 2%
- **Mid-Range**: 2% < RI ≤ 5%
- **High**: > 5%

- **Strong**: IQ5(B)
- **Mid-Range**: IQ4(A,B)
- **Weak**: IQ1-IQ3 (B)
<table>
<thead>
<tr>
<th>Geography</th>
<th>Matrix Score</th>
<th>% MHI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allakaket</td>
<td>High</td>
<td>12%</td>
</tr>
<tr>
<td>Arctic Village</td>
<td>High</td>
<td>15%</td>
</tr>
<tr>
<td>Atmautluak</td>
<td>High</td>
<td>6%</td>
</tr>
<tr>
<td>Beaver</td>
<td>High</td>
<td>20%</td>
</tr>
<tr>
<td>Birch Creek</td>
<td>High</td>
<td>77%</td>
</tr>
<tr>
<td>Chalkyitsik</td>
<td>High</td>
<td>7%</td>
</tr>
<tr>
<td>Chefornak</td>
<td>High</td>
<td>7%</td>
</tr>
<tr>
<td>Circle</td>
<td>High</td>
<td>35%</td>
</tr>
<tr>
<td>Crooked Creek</td>
<td>High</td>
<td>10%</td>
</tr>
<tr>
<td>Diomede</td>
<td>High</td>
<td>14%</td>
</tr>
<tr>
<td>Eagle</td>
<td>High</td>
<td>6%</td>
</tr>
<tr>
<td>Kipnuk</td>
<td>High</td>
<td>8%</td>
</tr>
<tr>
<td>Kongiganak</td>
<td>High</td>
<td>8%</td>
</tr>
<tr>
<td>Koyukuk</td>
<td>High</td>
<td>12%</td>
</tr>
<tr>
<td>Kwigillingok</td>
<td>High</td>
<td>10%</td>
</tr>
<tr>
<td>Lime Village</td>
<td>High</td>
<td>30%</td>
</tr>
<tr>
<td>Napakiak</td>
<td>High</td>
<td>16%</td>
</tr>
<tr>
<td>Napaskiak</td>
<td>High</td>
<td>13%</td>
</tr>
<tr>
<td>Nightmute</td>
<td>Medium</td>
<td>3%</td>
</tr>
<tr>
<td>Shageluk</td>
<td>High</td>
<td>9%</td>
</tr>
<tr>
<td>Stebbins</td>
<td>High</td>
<td>20%</td>
</tr>
<tr>
<td>Stevens Village</td>
<td>High</td>
<td>20%</td>
</tr>
<tr>
<td>Stony River</td>
<td>High</td>
<td>18%</td>
</tr>
<tr>
<td>Takotna</td>
<td>High</td>
<td>6.9%</td>
</tr>
<tr>
<td>Teller</td>
<td>High</td>
<td>7.1%</td>
</tr>
<tr>
<td>Tetlin</td>
<td>High</td>
<td>6%</td>
</tr>
<tr>
<td>Tuluksak</td>
<td>High</td>
<td>10%</td>
</tr>
<tr>
<td>Tuntutuliak</td>
<td>High</td>
<td>8%</td>
</tr>
<tr>
<td>Venetie</td>
<td>High</td>
<td>8%</td>
</tr>
<tr>
<td>Wales</td>
<td>High</td>
<td>7%</td>
</tr>
</tbody>
</table>
Unserved Communities

<table>
<thead>
<tr>
<th>Geography</th>
<th>Matrix Score</th>
<th>% MHI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alatna</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Mekoryuk</td>
<td>High</td>
<td>4.2%</td>
</tr>
<tr>
<td>Nunapitchuk</td>
<td>High</td>
<td>3.0%</td>
</tr>
<tr>
<td>Platinum</td>
<td>High</td>
<td>2.9%</td>
</tr>
<tr>
<td>Tununak</td>
<td>High</td>
<td>3.9%</td>
</tr>
</tbody>
</table>
This research project was made possible thanks to funding from the Alaska Department of Environmental Conservation (DEC) and the guidance of Mr. Bill Griffith, Ms. Camilla Kennedy and Mr. Dennis Wagner (EPA) as well as my committee members (Dr Joe Little, Dr Jungho Baek, Dr Christopher Wright and Ms Kennedy).

The analysis and conclusions contained in this study are those of the author alone and do not necessarily represent the point of view of the DEC or the EPA.

This document contains statements and models that are based on current estimates and assumptions that may be changed.
Questions?

bajohnson20@alaska.edu - WIHAH 2016
Further Research

- Thresholds
 - Using pre-established thresholds used in the Lower 48
 - Investigate affordability thresholds in rural Alaskan communities
 - Is a medium burden affordable?
- Price elasticity of water
 - Determine price elasticity of water in rural Alaskan areas
- Affordability of other utilities
 - Burden on households by other utilities
 - Determine if other utilities are affordable
Financial Capability Index

Proportionally calibrated almost ideal demand system (PCAIDS) model

We need:
1. The industry elasticity
2. The elasticity of demand of the products
3. The market shares

What we did:
- **Industry elasticity**: assumed it is equal to 1 (backed by literature)
- **Product Elasticity of Demand**
 - **Electricity elasticity**: A previous Ms Econ student calculated the elasticity of demand of PCE communities
 - **Water elasticity** – used the average of elasticity of demand figures found in the literature for flat rate systems
- **Market shares**: Assumed communities only have two utilities (water and electricity).
Economic theory suggests that as the price of a good goes up, the quantity of the complementary good consumed decreases. In other words, as the price of energy increases, we would expect people to consume less water - even with flat rates in effect.

We used the concept of *cross price elasticity of water*.

\[
\varepsilon_{\text{WaterElectric}} = \frac{\%\Delta Q_{\text{water}}}{\%\Delta P_{\text{Electric}}}
\]
Proportionally Calibrated Almost Ideal Demand System (PCAIDS)

- \[dS_{\text{water}} = -0.23 \left(\frac{dP_{\text{water}}}{P_{\text{water}}} \right) + 0.23 \left(\frac{dP_{\text{electric}}}{P_{\text{electric}}} \right) \]
- \[dS_{\text{electric}} = -0.03 \left(\frac{dP_{\text{electric}}}{P_{\text{electric}}} \right) + 0.03 \left(\frac{dP_{\text{water}}}{P_{\text{water}}} \right) \]
- \[\varepsilon_{\text{water-electric}} = \frac{\varepsilon_F}{s_w} + s_w(\varepsilon_{\text{market}} + 1) \]
Summary of Results

Served Communities

- Average MHI: $43,876
- Average Fee: $105
- Most projects are in the medium burden level

Unserved Communities

- Average MHI: $31,749
- Average Fee: $254
- Most projects are in the high burden level
Summary of Results

MHI vs. New Indicator

- The two indicators often differ
- The MHI indicator **tends to underestimate** the fee burden
- Chignik Lake is the only community where the MHI overestimates the fee burden with respect to the new indicator

Served and unserved communities

- Most projects in unserved communities are found to be unaffordable by both indicators
- Unserved communities have an average MHI of $31,749 (vs $43,876 for served communities)
Maximizing Sustainability in Arctic Water and Sewer: Energy Efficiency

Gavin Dixon
Senior Project Manager
ANTHC Rural Energy Initiative
The Alaska Native Tribal Health Consortium’s (ANTHC) Rural Energy Initiative works with communities to implement innovative energy efficiency and renewable energy solutions to make public sanitation affordable for the people we serve across Alaska.

We believe basic sanitation should be efficient, sustainable and affordable.
The Energy Intensive Arctic Sanitation System

We believe basic sanitation should be efficient, sustainable and affordable.
Breakdown of average operating costs for a water/sewer system in rural Alaska

Energy, 39%
Labor, 44%
Parts, 13%
Regulatory, 4%

We believe basic sanitation should be efficient, sustainable and affordable.
Our Path: A Comprehensive and Collaborative Approach

- Energy Audit
 - Onsite Assessment
 - Collect Data
 - Evaluate Operating Practices
 - Assess Facility Energy Use
 - Develop Energy Model
 - Identify Potential Improvements
 - Identify Cost to Implement
- Analysis
- Implement Recommendations
 - Develop Training Plan
 - Purchase Materials
 - Implement Efficiency Retrofits
 - Provide Operator Training
 - Construct Renewable Energy Systems
- Savings
 - Monitor Energy Usage
 - Evaluate Retrofit Effectiveness

We believe basic sanitation should be efficient, sustainable and affordable
Our Path: A Comprehensive and Collaborative Approach

Opportunities to Reduce Rural Sanitation Energy Costs

- Behavior Changes
 - Proper O&M
 - Training & Education
 - Ongoing Monitoring
 - ANTHC Rural Utility Support

- Hardware Changes
 - Efficiency Retrofits
 - New and Ongoing Projects
 - Renewable Energy Systems

We believe basic sanitation should be efficient, sustainable and affordable
Energy Costs Vary by Type of Water System

- Northern & Interior Alaska communities have circulating water, and many have vacuum sewer, unlike Anchorage and Southeast Alaska conventional systems.

- The result is very high fuel and electricity costs.
Small Efficiency Investments Yield Big Savings

Implementation Cost

<table>
<thead>
<tr>
<th>Project Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Projects</td>
<td>63%</td>
</tr>
<tr>
<td>Minor Projects</td>
<td>18%</td>
</tr>
<tr>
<td>Local Retrofits</td>
<td>16%</td>
</tr>
<tr>
<td>Operations & MA</td>
<td>3%</td>
</tr>
</tbody>
</table>

Annual Energy Savings ($)

<table>
<thead>
<tr>
<th>Project Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Projects</td>
<td>23%</td>
</tr>
<tr>
<td>Minor Projects</td>
<td>27%</td>
</tr>
<tr>
<td>Local Retrofits</td>
<td>23%</td>
</tr>
<tr>
<td>Operations & MA</td>
<td>27%</td>
</tr>
</tbody>
</table>

Small Efforts = **Big Results**
Typical Operational Issues and Minor Fixes Identified

- Boilers need to be cleaned and tuned
- Boilers settings are too high and not properly staged
- Boilers are operated all summer when they are not needed
- Circulation pumps can be shut-off in summer
- Building temperature is not set back during unoccupied hours
- Water storage tank and circulating loop temperature set higher than needed
- Lift Station pumps short cycling due to fouled floats
- Electric heat trace used all winter (or all year) when designed for emergency thaw only
-Leaks in Distribution/Collection causing increased well pump/lift station run time
 Longer Term Energy Upgrades Identified

• Improve the building shell by adding insulation and replacing windows/doors
• Replace old and tired boilers with new appropriately sized high efficiency cold start boilers
• Replace pumps with new high efficiency pumps and variable speed drives
• Repair and or replace process pipe and hydronic system insulation
• Add remote monitoring to optimize energy performance
Remote Monitoring

- http://rm.anthc.webfactional.com/reports/
- Records Results
- Allow for check ins and low cost technical assistance
- Greater access to information for regional partners
Non-Energy Benefits: Capacity

- Expanded Local Capacity
 - Expanded Knowledge
 - Improved Job Satisfaction
 - Local Ownership
- Access to Regional Support
Safety and Comfort

- Better Lighting
- Reduced Fire Danger
- Greater Confidence Interval on Freeze-Ups
- Improved Space Heat Balancing
- More Regular Hot Water
Health and Performance Improvements

- Reduced Moisture/Mold
- Faster/More Effective Drying
- Reduced Water Waste
Expanded Lifespan

• Critical Component Replacement
• Improved Maintenance
• Improved Financial Sustainability
• Spare Parts Provision
Appropriate Technology

• Visual feedback to inform operator behavior
• Ultra Efficiency / High–Tech versus Low–Tech
 – Low tech but locally operable encourages engagement, long term sustainability
 – SCADA versus local control / simple remote monitoring
• Low O /M Technologies
 – Heat Recovery, Programmable Thermostats
• Appropriate Technology/Scaled Renewables
 – Biomass Heating, Solar PV
Case Study: Energy Efficiency Retrofits – Pilot Station, Alaska

Training and small scale improvements.

- Saves sanitation system over 1,000 gallons of fuel oil and 25,000 kWh annually
- Equates to 66% reduction in Fuel and 33% drop in electricity
- Combined annual savings of $11,090

BEFORE: Brushing & cleaning soot from boiler
AFTER: Clean flue passage

We believe basic sanitation should be efficient, sustainable and affordable
Alternative Energy Options

Diesel Power Plant

Water Treatment Plant (WTP)
We believe basic sanitation should be efficient, sustainable and affordable.
Thank You

Gavin Dixon
Senior Project Manager
ANTHC Rural Energy Initiative
gndixon@anthc.org

For more information, please visit:
http://anthc.org/what-we-do/rural-energy/
WATER IS LIFE PROJECT

Alaska Native Tribal Health Consortium, National Tribal Water Center & Alaska Rural Utility Collaborative
WATER is Life is a collaborative health promotion campaign that uses art, culture, and media to create teachable moments that translate into positive community wide behavior change towards our most sacred resource – WATER.
Objective

1. Increase knowledge of water and its effects on health.
2. Increase community pride in and ownership of the local water and sanitation system.
3. Increase sustainability of the local water and sanitation infrastructure and traditional water culture.
Target Audience

The Water is Life project helps to create a pride and ownership in the water system to the three critical groups – Water Consumers, Water Treatment Plant Operators, and Utility Managers/Governments.
Partnering with Communities

Water is Life includes a community water visioning meeting, community water week activities and community water celebration.
Community Approach

Effective outreach and education starts with community participation.

Our team of experts are working together with the community:

• Youth education through teaching the importance of clean water through their traditional culture and lifestyle. (Lead by local elder)
• Youth water art activities. (Showcasing local artists)
• Community outreach on the Tribal radio station. (Interviewed by community members)
• Social media. (Facilitated and shared by local community members)
• Community newsletter articles. (Community members serve as contributing editors)
• Community Flyers. (Designed by local community members)
• Local News Coverage (Highlighting the community in a positive way)
What: Community Vision Meeting (Dinner and Door Prizes!)
When: Tuesday, March 9th from 5:30-7:00 pm
Where: Russian Mission School – Cafeteria
Who’s invited: Youth, Elders, Storytellers, Artists - Open to the Public

Please call James Temte at the National Tribal Water Center (907) 729-3600 or Francine Moreno at ARUC (907) 729-4502 with any questions

Please bring stories, photos, and memories to help describe Russian Mission traditional culture and water values

The National Tribal Water Center invites you to a community vision meeting to discuss and learn more about Russian Mission’s traditional values and beliefs surrounding water. There will be a nationally recognized native artist in attendance to partner with local talent to design a mural for the school that will represent and celebrate the water culture of the village.

For project updates, follow us on Facebook: National Tribal Water Center and Alaska Rural Utility Collaborative
At community meetings the discussion is often about their traditional culture and what is most important to the community. This helps to inspire the design for the mural.
Visioning Meeting - Russian Mission AK – Water is Life
Community Activities – Water Week

Activities to promote healthy water and sanitation behaviors include:

- Water bingo night
- Community movie night featuring films on traditional uses of water
- School Water Art Activities
- Water Ceremonies
- Children’s Water Mural
- Water Celebrations
Youth Art Projects

Bringing water education into schools paired with exciting water art experiences provide lasting for our future city council members, tribal leaders as well as future utility operators, managers and consumers. Art activities with children reflecting water create teachable moments, opportunities to inspire youth, and promote healthy vibrant communities spaces.
A public art mural reflecting the community's water culture. The mural is a continual reminder of our great heritage and is a source of community pride. When it is connected to the water and sanitation utility the positive community connection is formed between the community and the utility.
A public art mural reflecting the community's water culture. The mural is a continual reminder of our great heritage and is a source of community pride.
Celebrate Water!

A community dedication and celebration recognizes the importance of community water infrastructure, utility operators, and the role of the community.
Water is Life - Russian Mission

Through the efforts of the Water is Life project and the City of Russian Mission, the Russian Mission’s water and sewer finances are no longer operating at a deficit, and now have a spare parts reserves account balance for the first time since being in the ARUC program. In September 2015, the City of Russian Mission had a negative balance of -$44,084. As of April 30, 2016, their water and sewer net income (revenue minus expenses) had a positive balance of $12,480.45. Additionally, the City of Russian Mission voted to have $50,000 of sales tax revenue applied as a water and sewer subsidy for residential water and sewer rates to be decreased to $60 a month. This is the lowest rate out of all of the ARUC communities.
Russian Mission
water and sewer finances
Water is Life – Deering AK

Through the efforts of the Water is Life project and the City of Deering, the Deering sewer finances are decreasing debt. In a pre and post assessment the level of satisfaction the community has with their sewage service has rose from 8% to 46%.

“Feeling very proud. This mural that was painted on the water tank in Deering is from a photo of my gramma that my cousin took. They did a beautiful job on the mural! Its great to see art on big spaces.”

- Carmen Aqimayuk Sears, Deering community member
“A lot of my people are fishermen. We also hunt belugas, walrus, seals, ducks and other animals that also depend on water. What we eat is grown with water. It's important to show our kids how much we depend on water to feed our families every day and I think this (mural) helps.”

- Ron Moto, mayor of Deering
Deering sewer finances
THANKYOU!

Behind the scenes there were many meetings with the Tribal and City Councils, Utility Management, Regional Health Corporations, ANTHC, ARUC and the NTWC. Without everyone’s help this would not have been possible. Thank you, James Temte, Director of the NTWC and Marleah LaBelle, Community Relations Manager of ARUC.
COUNTRY COMPARISONS

WIHAH 2016
Tuesday Session: 8am-9:30am
Water and Sanitation Service Statistics

- Number and % of population without in-home water and sewer service
- Number and % rural without service
 - (could be per population or community)
- Number and % urban without
Water Service

- Water treatment methods are used?
- How is water distributed to homes?
• Sewage Service, household waste
• Costs
• Operations and Maintenance
• Regulation Authority
• Challenges
Water and Sanitation Summary for Greenland

Kåre Hendriksen
Associate professor PhD
Arctic Technology Centre, Technical University of Denmark
Sisimiut, Greenland
krhe@byg.dtu.dk
Geography and Demographics

• Greenland
 – 2,146,000 km²
 – Population: 56,000
 – Urban: 17 “towns” with 430 to 17,000 inhabitants
 • Largest city Nuuk 17,000 inhabitants
 – Rural
 • 56 “settlements” with 20 to 460 inhabitants
 • App. 40 isolated sheep farms

• Ethnic groups
 – App. 86% Greenlanders (inuit)
All infrastructure in all towns and settlements in Greenland is based on island operation.
Water and Sanitation Services

Total number of households: 22,000

• Households without:
 – Water app. 1,800 = 8 %
 – Sewer app. 5,900 = 27 %

• Households in “settlements” without:
 – Water app. 1,600 = 60 %
 – Sewer app. 2,350 – 88 %

• Household in “towns” without:
 – Water more than 200 = 2 %
 – Sewer app. 20 – 25 %
Unserved Communities
Water Service

All water production based on surface water (except one smaller settlement that has groundwater)

- Generally using larger and deep lakes – alternatively rivers
- 1 settlement have no water supply
- 7 settlements are using reverse osmosis (RO)
- 1 town and 3 settlements with RO backup
- 1 town melt icebergs a third of the year
Water Service

Water treatment

• Towns
 – Sand filter, chloride and UV light
 – In case of organic material aluminum-salt

• Settlements
 – Bag filter and UV light (5 settlements without UV)
 – Chloride is only used in 6 settlements
Water Service

Water distribution to homes

- **Towns**
 - Mainly pipes
 - Truck transport
 - Individual collection at tap-houses

- **Settlements**
 - Few pipes
 - Individual collection at tap-houses
 - “Alternative solutions”
Intake of raw water in Ilulissat

Fotos: Hans Ole Hansen

Raw water pipe, waterworks and water tank of Ilulissat
Intake of raw water in Kuummiut

Intake of raw water in Sermiligaaq
Sewage Service, black water waste

Sewage and black waste water treatment

• Larger towns (+ 500 households)
 – Mainly sewages with pumps
 – Truck pick up from tanks
 – Plastic backs (honey buckets) 7 %

• Smaller towns
 – Manly plastic backs (honey buckets) 75 %

• Settlements
 – Manly plastic backs (honey buckets) 88 %
Grey water are let out to the ground
Sewage Service, household waste

Sewage and black waste water treatment methods

- Sewage is lead into the sea
- The tanks and plastic backs (honey buckets) are emptied into the sea
Sisimiut – the second largest town in Greenland

Sewage is lead into the sea

House for emptying the honey buckets
Emptying of honey buckets in settlement

Photo: Hans Holt Poulsen
The bags are left on the dump
Loose dogs and birds tearing holes in the bags

Honey buckets in Qaanaaq
Costs

Water supply is treading by the national electricity and water supply company Nukissiorfiit

- Owned by the Self Government

Establishing all older water supply systems was paid by the public

- during the last decade new systems have been paid by Nukissiorfiit – unless it is in the Self Government budget
Costs

- Water is paid by the users
 - Until 2005 there were fixed prices for electricity and water – changed to ‘cost based prices’
 - Public subsidies to stay under a maximum price
 - Price differentiation up to app. 100 %
Costs

Sewers are established and run by the municipality

- There is no fee for using the sewer
- But there is a fee for emptying tanks and collecting plastic bags (honey buckets)
Regulation Authority

- The overall regulation and definition of level of service is defined by the Self Government.
- Nukissiorfiit is responsible for water.
- The municipalities are responsible for sewer and black waste water treatment.
- Ministry of Nature, Environment and Energy is responsible for control.
Challenges

Water

- Several towns and settlements are located on small islands in high Arctic desert with limited water resources
- This challenges the opportunities for business development
- Searching for sustainable solutions
Challenges

Black waste water treatment

• It is costly and complicated to establish and maintain sewer – especially in smaller towns and settlements

• Have to develop new and alternative solutions
Department of Health
Nunavut
Michele LeBlanc-Havard EHS to the CMOH Territory of Nunavut
Demographics

- Population of 36,919
 - Spread over 3 time zones in Northern Canada
 - 25 remote communities ranging in size from 192 – 7,543
Unique

- Nunavut’s land mass is 20% of Canada with only 0.1% of Canada’s population
 - Mass watersheds
 - Many considerations for treatment and protection
Canada’s Drinking Water Regulatory landscape

Decentralized Regulations

- Canadian Drinking Water Quality Guidelines (CDWQG)
- Jurisdiction’s responsibility (GCDWQ)

1. Microbial
2. Chemical and Physical
3. Radiological
 1. 77 MACs
 2. 18 AOs/OGs
Nunavut’s Water Regulations

Nunavut Water Board and AANDC

- Municipal use of water
 - Withdrawal of water
 - Storage of water

Public Water Supply Regulations DH

- Turbidity 5 NTU
- Color 15 Units
- Odor 3
- Chlorination
- List of 22 chemical parameters
- Radiological
Nunavut Water Board

• Each municipality/Hamlet operates via a “withdrawal and discharge” permit - Nunavut Water Board

• Fresh water
 – The terms and conditions of the permit are based on volume withdrawn from a surface water source and effluent deposited to a receiving water body
 – Specific to each municipality
 – Enforced by the federal government INAC
Public Drinking Water and Sewage
Community Reality

- Distribution is via trucked delivery except for above ground utilidor
 - 3 utilidor communities – they also have a mix of above ground service and trucked
Community Drinking Water - Treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Communities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorination</td>
<td>All</td>
</tr>
<tr>
<td>UV disinfection</td>
<td>4</td>
</tr>
<tr>
<td>Cartridge Filtration</td>
<td>5 Another 4 under construction</td>
</tr>
<tr>
<td>Pressure media filtration</td>
<td>3</td>
</tr>
<tr>
<td>Slow Sand</td>
<td>2</td>
</tr>
</tbody>
</table>
Canada Wastewater Regulations

Harmonized Approach

- Pre 2012 was decentralized
- CCME Canada-wide Strategy for Municipal Wastewater (2009)
- Wastewater Systems Effluent Regulations (WSER)

WSER

- Came into effect in 2012
- Does not apply north of 54th parallel
- The northern jurisdictions and the federal government are engaged in development of performance standards for the Far North
NU Wastewater license requirements

Nunavut Water Board and INAC - WRTA, AWPPA

- Deposit of waste

Water Licence Requirements

- Site specific
 - TSS: 100 – 180 mg/L
 - BOD: 80 – 120 mg/L

- Becoming more stringent
 - Reflective of WSER
DH Sewage Regulations

• Less robust than the regs for drinking water
• Concerned primarily with situations posing a “health hazard”
Public Drinking Water

• Source water
 – Water quality is very good
 • Low turbidity
 • Low organics
 • Low metals
 • Low bacteria both TC and EC
 – May see between 3 -5 BWAs per year
 – No permanent BWAs in place
NU Wastewater Management

<table>
<thead>
<tr>
<th>Predominant Treatment</th>
<th>Communities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical System</td>
<td>4</td>
</tr>
<tr>
<td>Lined Lagoon</td>
<td>6</td>
</tr>
<tr>
<td>Granular Lagoon</td>
<td>6</td>
</tr>
<tr>
<td>Natural Pond</td>
<td>4</td>
</tr>
<tr>
<td>Tundra Wetland</td>
<td>5</td>
</tr>
</tbody>
</table>
Impacts

<table>
<thead>
<tr>
<th></th>
<th>Southern Jurisdictions</th>
<th>Nunavut</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>25 mg/L</td>
<td>100 – 180 mg/L</td>
</tr>
<tr>
<td>BOD</td>
<td>25 mg/L</td>
<td>80 – 120 mg/L</td>
</tr>
<tr>
<td>Special Impact of effluent</td>
<td>kilometers</td>
<td>meters</td>
</tr>
<tr>
<td>Temporal impact</td>
<td>Annual millions liters per day</td>
<td>Weeks thousands liters per day</td>
</tr>
</tbody>
</table>
Water and Sewage Costs

• Water and sewage services
 – Responsibility of the resident/homeowner
 • Water rates are based on the sewage pump out service
 – You pay for pump out and then water use is calculated
 – Fees are set by the municipality/Hamlet
 – Typical water rates are $150.00 dollars every 3 months for a family of 4 (heavily subsidized)
Infrastructure and Governance

• GN CGS provides financial and technical support to the municipalities (for the most part)
 – Operations and community infrastructure and development
• DH ensures the Public Health Act and Public Drinking Water Regulations are adhered to
Challenges

• Technically advanced system
 – Harsh climate
 – Remote locations
 – Cost

• Regulations
 – Application in the north
 – Public perception
Opportunities

• Appropriate Systems
 – Small communities
 – No industrial inputs
 – Unique climate

• Research
 – Science-based decision making
 – Inform policy development
Drinking Water Plan for Nunavut

• In preparation for new public drinking water regulations
 – A review of the water regulatory approaches in circumpolar regions, northern jurisdictions in Canada and the WHO with particular attention to guidelines and standards for safe drinking water and use of water safety plans
Study on Drinking Water

• Joint venture through CGS and DH with Centre for Water Resources at Dalhousie University, Halifax Nova Scotia
 – The study has recommended the DH adopt WSP into their regulatory framework
 • Making reference to the GCDWQ
 • A risk assessment tool has been provided that could be used to classify and guide each municipal operator in determining and providing specific water safety plan for their source water
Sewage

• The proposed approach for water is similar to what is currently done with sewage
• The NWB sets the criteria to be met for deposition of sewage
 – INAC enforces the water license
 • Ensures that the effluent deposition criteria is met
Community Based Service with Territorial Program Development
Water truck fill station
Sewage
Glimpse of Community Life
Pangnirtung Harbour
Thank You!

- Dr. Maureen Baikie Public Health Consultant
- Justine Lywood P.Eng, Project Manager Sanikiluaq Development Corporation
- Dr. Graham Gagnon, Centre for Water Research Dalhousie University
Questions??
Water and Sanitation Summary for Northwest Territories-Canada

Peter Workman BA Sc. CIPHI (C)
Chief Environmental Health Officer
Department of Health and Social Services, Government of Northwest Territories
Yellowknife, Northwest Territories, Canada
peter_workman@gov.nt.ca
Geography and Demographics

• Country/Region size
 – 1.35 million square kilometers

• Population: 43,000
 – Urban:
 • 19,000 in Yellowknife,
 • 23% in regional centres Fort Smith, Hay River and Inuvik
 – Rural
 • 32% in 28 other communities (70 to 1900 people)
Demographics

- Racial or ethnic groups
 - about one half of NWT is aboriginal
 - 86% of population in smaller communities are Aboriginal
 - 23% in Yellowknife
 - 52% in Fort Smith, Hay River and Inuvik

- Aboriginal population includes:
 - First Nations (29%)
 - Inuvialuit - in the 6 northern most communities (11%)
 - Metis - mainly in Yellowknife, Hay River and Fort Smith.
Northwest Territories, Canada
Water and Sanitation Services

- Majority of homes in NWT have in-home water and sewer service (approx. 95% or more)
- Many NWT communities are on trucked services. Water is a community resource and is trucked to homes and sewage is pumped out disposed of in community sewage systems.
Water Service

• Water treatment methods are used?
 – Filtration, flocculation, chlorine, ozone, fluoride adjustment

• How is water distributed to homes?
 – pipes to home (large communities have mostly piped)
 – truck transport (some parts of each community and all services in smaller communities)
WATER SYSTEMS OVERVIEW

SOURCE

INTAKE
(outside)

INTAKE
(inside)

CHLORINATION

UV DISINFECTION
(depends)

FILTRATION
(depends)

DISTRIBUTION

STORAGE

TAP
Sewage Service, household waste

• Sewage collection
 – pipes (gravity, into flowing/moving system large communities
 – truck pick up (some of each community and all of small communities)

• Sewage treatment methods
 – Primary, some secondary treatment, few tertiary
Sewage Lagoon, Paulatuk NT
Costs

• Who pays for?
 – Construction, engineering
 • Community governments (funded by Territorial or Federal Government initiatives)
 – Operations and maintenance
 • Local users, in larger communities with subsidy from territorial government
Operations and Maintenance

- How is this organized?
 - Local responsibility at community level
 - Support ($ and training) from territorial government

- If local user fees are paid, who collects them?
 - Community governments/town
Regulation Authority

Who sets and enforces the rules for water and sanitation services?

– Local community responsibilities
 • Fees, call outs, delivery rules, operations

– Territorial government
 • HSS for drinking water,
 • ENR and MACA sewage

– Regional Water boards and land use planning groups.

– National government responsibilities
 • Guidelines, effluent criteria guidance
Challenges

- Climate or environmental change
 - Some NWT communities are coastal/next to large rivers and risk flooding

- Regulations (laws, rules)
 - Regulations are meant to streamline and provide clarity to communities. Water boards and Government have dual jurisdiction

- Organization or Government
 - Approvals can be complex and multilevel and stages
Challenges

- Financial - costs far exceed recovery of cost models
- Engineering, design or age of systems
 - Systems are costly to install - permafrost and other issues
 - Replacement requires shipping by sea, barge or air.
“Thank You”

- Justin Hazenberg
 Department of Municipal and Community Affairs
 Government of Northwest Territories

- Dr. Andre Corriveau
 Chief Public Health Officer
 Department of Health and Social Services
 Government of Northwest Territories
Water and Sanitation Summary for Yukon, Canada

Tyler Heal, EIT
Civil Engineering Lead, Yukon
Stantec Consulting Ltd.
Whitehorse, Yukon, Canada
Tyler.Heal@Stantec.com
Geography and Demographics

- Country/Region size
 - 482,443 km² (28% Alaska)

- Population: 37,642 (5% Alaska)
 - Urban: 32,671
 - Largest city – Whitehorse area (29,092 – 77%)
 - Rural: 4,971
 - 18 communities, 12 - 913 people in size

- Racial or ethnic groups (self-reported)
 - 7,796 Indigenous (21%) – 13 First Nations
 - 29,846 non-Indigenous (79%)
• Only 1 Arctic community (Old Crow)
 – Freezing Index: 4,400 degree-days-C

• Rest are road accessible year-round
 – Freezing Index: 1,800 to 3,300 degree-days-C
Water and Sanitation Services

- 600 (1.7%) of population without in-home water and sewer service
 - ~450 (1.2%) rural without service
 - ~150 (0.5%) urban without service
- Coordination difficulties in First Nation vs. non-First Nation communities
 - Overall community responsibility (Territorial) vs. FN subdivisions
 - Many rural residential without adequate on-site services
Water Treatment / Source

- New Guidelines on Canadian Drinking Water Quality require enhancement of treatment in many communities
 - GUDI groundwater sources generally require UV, chlorination
 - Hardness, iron, manganese common in ground water

- All but one community use groundwater sources ("local preference" to not use surface water)
Water Service

• 60% are Large Public Drinking Water Systems
 – Piped systems (7): ~29,000 (77%)
 • Whitehorse dominates this (75%)
 – Trucked haul: ~2,000 (5%)

• 40% are Small Water Systems or private wells
 – Private wells: ~5,000 (13%)
 – Self-haul: ~1,500 (4%)
Water Service - Hauled
Water Service - Piped
Water Service - Piped

- **Freeze protection!**
 - Community choice drastically influences water use – Dawson City (2,000) uses 1,600 Lpcd (420 gal/cap/day), approx 65% of which is bleeders.
Sewage Service

- Sewage collection
 - Piped service: 29,000 (77%)
 - Again, dominated by Whitehorse (~75%)
 - Trucked pump-out: ~2,000 (5%)
 - Septic systems (on-site): ~6,500 (17%)
 - Large impact on water safety planning
 - Self-haul: negligible
 - Outhouses: unknown (by choice)
Sewage Service, Household Solid Waste

- Sewage treatment methods
 - Lagoons: ~29,000 (77%)
 - Mechanical (2 systems): 2,600 (7%)
 - On-site (septic field): ~6,500 (17%)

- Solid waste: 19 sites managed by Yukon Government, 7 managed by municipalities
Mechanical Sewage Treatment

- Poor experience in Yukon
Costs

• Jurisdiction influences funding:
 – First Nations communities - Federal
 • 9 self-governing, 4 Indian Act
 – Unincorporated communities – Territorial
 – Municipalities – Self-funding / Territorial
Costs

• Construction, engineering
 – Gas Tax funding
 • $163M, 2014-2024
 – New Build Canada Fund (75% Federal, 25% Territorial) – administered by Yukon Gov’t, can be accessed by municipalities
 • $342M, 2014-2024
 – Yukon Government capital funding
 – Municipality water/waste funds (user fees)
 – First Nations: INAC contribution agreements
Costs

• Operations and maintenance
 – Local users (user fees)
 – Yukon Government / INAC subsidies in many communities (or directly operate some systems)
Operations and Maintenance

• How is this organized?
 – Municipalities
 – First Nations
 – Yukon Government directly operates some (water - 7 community supplies, 4 trucked)

• Local user fees (if exist): collected by municipality / First Nation
 – Larger communities are able to self-fund
Regulation Authority

- Federal: Canada
 - Guidelines for Canadian Drinking Water Quality (GCDWQ) – Health Canada
 - Wastewater Systems Effluent Regulations (WSER)
- Territorial: Yukon
 - Environmental Health Services
 - Yukon Water Board
 - Acts & Regulations
- Municipal / Community
 - Construction standards
 - Bylaws
Challenges

- **Climate change**
 - Impact on operation of lagoon systems
 - Melting permafrost – piped systems
- **New federal regulations**
 - Have prompted need for upgrade of nearly every water system (and sewage systems in future)
 - Large capital, O&M cost implication ($$$)
- **Federal/Territorial/FN overlap**
 - Ex: leads to one half of a community having good water & sanitation service; other half on boil water advisories
Challenges

- Sludge – how to handle this resource?
- Solid waste – lack of coordinated approach
- Lots of new funding available: How to determine appropriate levels of investments
 - Levels of service
 - Lifecycle cost
 - Prioritization
- Water use volumes & wastage
 - Bleeders (freeze protection), user education
Opportunities

• New Yukon Operator Training Program
 – EOCP (Environmental Operators Certification Program) at Yukon College in Whitehorse (2011)
• INAC Circuit Rider Program
• Self-governing First Nations and financing of infrastructure
• Sharing water and sanitation infrastructure between municipalities & nearby First Nation
• Use of SCADA & remote monitoring
Thank You

- Yukon Government
 - Community Services
 - Environmental Health Services
- Stantec colleagues
- Rick Savage, Tech-Con Engineering Services
Water and Sanitation Summary for Alaska

Bill Griffith, Facility Programs Manager
Alaska Department of Environmental Conservation
Anchorage, Alaska
bill.griffith@alaska.gov
Alaska is 1.5 Million Sq. Km. (580,000 Sq. Miles)
2016 Population = 740,000 people
About 0.5 People Per Sq Km
Population Distribution of Alaska \((Total\ population = 740,000)\)

- About 54% of population \((400,000\ people)\) lives within one hour drive of downtown Anchorage.
- Roughly 10% of population lives in 185 remote communities, with populations less than 1,100 people.

(“Rural Alaska” in this presentation)

<table>
<thead>
<tr>
<th>Ethnic Group</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>70%</td>
</tr>
<tr>
<td>Alaska Native</td>
<td>18%</td>
</tr>
<tr>
<td>Asian</td>
<td>5%</td>
</tr>
<tr>
<td>Black</td>
<td>4%</td>
</tr>
<tr>
<td>Pacific Islands</td>
<td>1%</td>
</tr>
</tbody>
</table>
Geographic Dispersion of Alaska Native Population

Proportion Alaska Native (Alone) by Borough and Census Area, 2014

Proportion Native (Alone)
- 75 to 100 percent
- 50 to 75 percent
- 25 to 50 percent
- 0 to 25 percent

Sources: Alaska Department of Labor and Workforce Development, Research and Analysis Section; and U.S. Census Bureau
Three Levels of Water and Sewer Service in Rural Alaska Communities

- “Served” communities with a small percentage of unserved homes
- “Unserved” communities where the only service in the community is a washeteria and a community watering point
- “Under-served” communities with a closed haul water and sewer system
Rural Alaska Sanitation

Water & Sewer System Types in Rural Alaska by number of communities
August, 2015

- Piped: 105 Communities (58.3%)
- Unserved: 31 Communities (17.2%)
- Individual Wells & Septic Tanks: 20 Communities (11.1%)
- Served by Mix: 13 Communities (7.2%)
- Covered Haul: 11 Communities (6.1%)
Location of Unserved Alaska Communities
Alaska Housing Characteristics: Water and Sewer Service

- Total number of homes in Alaska: 264,270
- Number of homes in Alaska villages (rural Alaska): 34,300
- Number of unserved homes: 3,285
 - Total unserved homes in unserved communities: 2,135
 - Total unserved homes in served communities: 1,150
- Total number of under-served homes (water and sewer haul system): 789
Sources for Capital and Operational Expenses

• Capital – 100% Federal and State Grants
 • Grants do not require local contribution
 • Loans are available, but communities have limited capacity to borrow

• Operation and Maintenance Costs
 • 100% local user fees + local subsidies (gaming revenue, for example)
 • No Federal or State subsidy funding is available
• Public water systems: All water is treated to standards established nationally by the U.S. Safe Drinking Water Act, regardless of ultimate use (drinking, washing, flushing, household landscaping, etc.)

• Waste water systems: All wastewater discharges must meet treatment standards established nationally by the U.S. Clean Water Act. Specifically, the National Pollutant Discharge Elimination Program (NPDES) identifies treatment and discharge requirements for domestic wastewater treatment and disposal systems.
Alaska Challenges

• High cost of needed capital construction in remote Alaska villages (over $2 billion)
• Inability of most Alaska villages to borrow money, even for small capital improvements
• High cost of operation and maintenance, due largely to the high cost of energy
• Lack of state or federal subsidy to support and encourage good operation and maintenance practices
• Impact of climate change on traditional sources of water
• Environmentally threatened communities and infrastructure
Alaska Water Sewer Challenge – Phase 3

Team University of Alaska Anchorage

Presenter
Aaron Dotson, Ph.D., P.E. (AZ)
Associate Professor

Water Innovations for Health Arctic Homes
September 18-22, 2016

http://beta.adn.com/resizer/54BVJcldWVnpxAXc2a1CwQGClq0=/600x0...
.../s3.amazonaws.com/arc-wordpress-client-uploads/adn/wp-content...
.../uploads/2016/08/05143226/UAAWaterSewage160805-003.jpg?token=bar
Our Team
Our Communities

Kipnuk, AK

Koyukuk, AK
Population: 95 (2014)
Team and Community Design Features

Community Features
• Real (durable) toilet
• Minimal home modification
• Assured quality/safety
• Choice in fixtures

Team
• Physical / Chemical Treatment Processes ONLY
• Minimize chemical usage
• A treatment goal of 85% water recovery
Design Evolution during this Phase

Our focus on effectiveness has required design changes

1. Acceptable water quality (human contact & premise plumbing)
2. Acceptable cost and effort of operation
3. Passes challenge tests of the State and our Team
Design Evolution during this Phase

To date – based on improving water quality

Based on design after Phase II
Design Evolution during this Phase

To date – based on improving water quality

Modification: Physical removal of soap
Design Evolution during this Phase

To date – based on improving water quality

Modification: Stopped urine recycle
2 step treatment for all reuse
How do we achieve the quality?

Through treatment in our treatment conex
Wash Water
Conex/Home
Connection
Greywater
Soap Removal
Nanofiltration
Ultraviolet Light Disinfection
Reverse Osmosis
Ultraviolet Light Disinfection
Disposable Cartridge or Bag Filtration
Spiral Wound Membrane
Ultraviolet Light Disinfection
Symbol Legend
Fill
Add 80 gallons
Treat Greywater
Rinse
Treat Intermediate
Add 80 gallons
Treat Greywater
Use Day 1
Use Wash Water
Return Greywater
Treatment
Use Day 2
Rinse UV
Rinse Membrane
Treat Greywater
Rinse Membrane
Use Day 2
Use Wash Water
Return Greywater
Waste & Refill
Typical Day
Rinse
Treat Intermediate
Rinse
Treat Greywater
Rinse
Waste Concentrate
Add Water
Typical Day
Waste
Typical Day
Ready for
Use
Treatment System Water Balance

• Goal is to achieve at least 85% recovery from our membranes

 • 20 gallons removed weekly
 • 19 gallons membrane concentrate
 • 1 gallon bubble concentrate

 • 20 gallons of source water added to replace weekly

• Reuse Factors

 • 20x reuse with dry toilet (8 weeks to replace entire water volume)!
 • 8x reuse with flush separating toilet (3 weeks to replace entire water volume)!
Where does the water come from?

- Rain Water
- Surface Water
- Treated Water
Treatment Cost and Effort

Assumptions: 6 month cleaning cycle maintenance interventions
3 year membrane and UV lamp replacements

<table>
<thead>
<tr>
<th>Water Source</th>
<th>Paid Haul</th>
<th>Weekly Water In</th>
<th>Weekly Waste Out</th>
<th>Monthly Usage Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washeteria</td>
<td>Yes</td>
<td>20</td>
<td>20</td>
<td>$ 59.70</td>
</tr>
<tr>
<td>Washeteria</td>
<td>No</td>
<td>20</td>
<td>20</td>
<td>$ 21.50</td>
</tr>
<tr>
<td>Rain/Surface</td>
<td>Yes</td>
<td>20</td>
<td>20</td>
<td>$ 33.50</td>
</tr>
<tr>
<td>Rain/Surface</td>
<td>No</td>
<td>20</td>
<td>20</td>
<td>$ 13.50</td>
</tr>
</tbody>
</table>
Upcoming Modifications

• Enhance Bubble Removal
 • Add recirculating filter
 • Upgrade to industrial components

• Purpose of Modification
 • Increase time between membrane cleanings (i.e. maintenance effort)
 • Reduce rate of membrane pressure rise (i.e. reduce operating cost)
How is this system connected to my home?

What about the drinking water and my toilet?
Fixture Associated Air-Driven Sewer

- 15 psi Air
- Tank Level Sensor
- Vent
- Actuated Ball Valve (3)
- Drain
- Discharge to Conex
- Fixture Sewer Tank

5 um bag filter
1 um cartridge filter
Fixture Associated Small Pump Water

1 pump per fixture
12 V DC
1.1 gal per min
Fixture Associated Small Tank Water Heating

- Wash Water
- Shower Water Heater 4 gal
 - Primary Shower Faucet
- Laundry Water Heater 4 gal
 - Laundry Spigot
- Bath Sink Water Heater 2.5 gal
 - Primary Bath Sink Faucet
- Kitchen Sink Water Heater 2.5 gal
 - Primary Kitchen Sink Faucet

Flow Switch (4)

Water Heater Controller

Standard Household Outlet

Under sink
Small Tank
Water Heater
Drinking Water System

Drinking Water Faucets

Drinking Water Tank

UV Disinfection

1um Filter
Porcelain Separating Toilet – Small Tank Haul

Dual Flush System
0.7 gallons/full flush
0.1 gallons/urine flush

Toilet Selection
Is largest cost driver!

Urine Drain to Full Flush Tank
Gravity Full Flush Tank
Capital Costs – Not paid by Homeowner

<table>
<thead>
<tr>
<th>Category</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials & Construction Labor</td>
<td>$80,000</td>
<td>$100,000</td>
</tr>
<tr>
<td>Shipping & Location at Home</td>
<td>$5,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>State Oversight Fee</td>
<td>$40,000</td>
<td>$50,000</td>
</tr>
<tr>
<td>Total Estimate</td>
<td>$125,000</td>
<td>$160,000</td>
</tr>
</tbody>
</table>

Capital Costs – Paid by Homeowner

- washer & dryer
Monthly Water/Sewer Operating Costs
Paid by Homeowner

<table>
<thead>
<tr>
<th>Water Source</th>
<th>Paid Haul</th>
<th>Monthly Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washeteria</td>
<td>Yes</td>
<td>$170.40</td>
</tr>
<tr>
<td>Washeteria</td>
<td>No</td>
<td>$97.90</td>
</tr>
<tr>
<td>Rain/Surface Water</td>
<td>Yes</td>
<td>$141.50</td>
</tr>
<tr>
<td>Rain/Surface Water</td>
<td>No</td>
<td>$60.50</td>
</tr>
</tbody>
</table>

All costs include $40/month Co-op fee. UV lamps and membrane replacement included. General maintenance covered by Co-op fee.
Other Monthly Operating Costs based on Usage Paid by Homeowner

<table>
<thead>
<tr>
<th>Component</th>
<th>kWh/day</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensing Washer/Dryer Combo</td>
<td>1</td>
<td>$6.90</td>
</tr>
<tr>
<td>Small Volume Electric Point-of-Use Water Heaters</td>
<td>1</td>
<td>$15.20</td>
</tr>
</tbody>
</table>

Appliance choice may have significant effect on water usage also and must be considered.
We appreciate your interest in our progress!

Code and Design Plans
http://www.github.com/dotsonlab

Blog
http://www.reusewaterak.com

Facebook
http://www.facebook.com/reusewaterak

Human Contact

Aaron Dotson
Team Lead – University of Alaska Anchorage
907-786-6041
addotson@alaska.edu

** Sign up for Tuesday’s System Tour **